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Abstract— Recently, extensive approaches have been proposed
for reducing the encoding complexity of high efficiency video
coding, by predicting the coding tree unit partition using deep
neural networks. However, these approaches cannot work in real
time due to the complexity of the network architectures. In this
paper, we propose a network pruning approach to accelerate a
state-of-the-art deep neural network model, for real-time coding
tree unit partition. Specifically, we first investigate the compu-
tational complexity throughout the network, and find that most
calculations can be simplified by pruning the weight parameters.
Considering that the number of weight parameters drastically
differs by network layer and partition level, we design an adaptive
pruning scheme by applying a well-suitable retention ratio of
weight parameters to each layer at a level. The retention ratio
indicates the ratio of weight parameters after and before pruning.
By varying the retention ratios, we can obtain several accelerated
network models with different levels of complexity. We further
propose a complexity control algorithm by applying different
accelerated models to different coding tree units, to ensure
that the actual encoding complexity is close to a given target.
To guarantee the rate-distortion performance, we model the
complexity control algorithm as a convex optimization problem,
and we can obtain a closed-form solution. Experimental results
show that our approach can accelerate the original deep neural
network model by 17–20 times, with little expense on the
Bjøntegaard delta bit-rate. For complexity control, we achieve
high control accuracy with a control error of less than 2% for
most video sequences.

Index Terms— High efficiency video coding, coding tree unit
partition, complexity control.

I. INTRODUCTION

THE high efficiency video coding (HEVC) standard [1] has
been proposed by the Joint Collaborate Team on Video

Coding (JCT-VC), to address the challenge on transmitting
and storing the explosive amount of high definition videos.
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Compared with its ancestor advanced video coding (AVC)
standard [2], HEVC can save bit-rates by approximately 50%
on average. The remarkable coding efficiency benefits from
a set of advanced techniques, including the flexible partition
of coding tree unit (CTU), the precise intra-/inter- prediction
modes, and the in-loop filter. However, these techniques lead
to heavy computational complexity,1 which is averagely 253%
higher than AVC [3]. To alleviate this problem and further
facilitate real-time encoding, it is essential to reduce the
complexity of HEVC while keeping its rate-distortion (RD)
performance.

Recent years have witnessed a variety of approaches for
HEVC complexity reduction. As measured in the reference
software HM [4], the recursive checking on coding unit (CU)
partition accounts for more than 80% of the encoding time,
similar to that reported in [5]. Therefore, most approaches
focus on early deciding the reasonable CU partition patterns
and skipping the other patterns. In earlier times, numerous
heuristic [6]–[11] and learning-based [12]–[18] approaches
were developed, which utilize some intermediate features in
encoding to determine the CU partition before exhaustively
checking all partition patterns. Despite the considerable
reduction of coding complexity, the hand-crafted features rely
heavily on the prior knowledge, which may be inefficient
and lead to undesirable RD performance. To overcome
such drawback, some deep-learning-based approaches were
proposed [19]–[22]. They can automatically extract features
from video content using deep neural networks (DNNs). For
example, Liu et al. [19] and Li et al. [20] proposed using
convolutional neural network (CNN) to determine the CU par-
tition for intra- and inter-modes, respectively. Xu et al. [23]
designed a fast CU partition approach with a deep early-
terminated hierarchical CNN (ETH-CNN). Although the
deep-learning-based approaches work well in both complexity
reduction and RD performance, their network architectures
are still heavy so that the running time of network cannot
be ignored for real-time HEVC encoders. In fact, numerical
studies [24]–[31] have shown that a DNN can be accelerated
with little degradation on prediction accuracy. However, to the
best of our knowledge, there is no existing work proposed to
speed up the DNNs for HEVC complexity reduction.

1Complexity normally refers to time complexity or storage complexity.
In this paper, complexity means time complexity, i.e., the computational cost
of running the algorithm.
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Fig. 1. An example illustrating the CTU partition of a frame at the Low
Delay P (LDP) configuration, predicted by the full ETH-CNN model and
our pruning approach with 10% of complexity target. The light blue patches
represent the CUs with different partition between the two encoded frames.
The running time was measured on a computer with Intel (R) Core (TM)
i7-8700K CPU @3.2 GHz with only single thread.

This paper proposes accelerating a state-of-the-art DNN
model, i.e., ETH-CNN [23], to achieve real-time CTU partition
of 1080p video frames with a single CPU thread. First,
we investigate the computational complexity of ETH-CNN for
all layers, and find that more than 97% of floating-point opera-
tions are from the weight parameters (WPs) in trainable layers.
Next, we design an adaptive pruning scheme, for determining
the retention ratios to prune the WPs at each layer and each
level of ETH-CNN. Here, the retention ratio indicates the ratio
of WPs after and before pruning. Using the pruning scheme,
we obtain seven accelerated ETH-CNN models, corresponding
to seven different retention ratios of WPs. Consequently, these
models provide varying trade-off between complexity and RD
performance, and the partition of each CTU can be predicted
by any of them. Furthermore, we develop a complexity
control algorithm, enabling the average running time of CTU
partition to be continuously adjustable. It is achieved by
applying different models to different CTUs, with minimized
control error and RD loss. As a result, the CTU partition can
be drastically accelerated, and the overall control accuracy can
be guaranteed. Figure 1 shows the CTU partition using the
full ETH-CNN model and our pruning approach with 10-time
acceleration target. As can be seen in Figure 1, the CTU
partition predicted by full and pruned models is similar to
each other. In addition, the average running time of our
approach is shortened to 10.6%, which is quite close to the
target 10%. All of these are only at the expense of 1.33% bits
overhead and 0.0148dB PSNR degradation. Our acceleration
algorithm for ETH-CNN is programmed by the open-source
machine learning library TensorFlow 1.12 [32], and then
integrated into HM 16.5 [4] with the binary files of the learned

ETH-CNN parameters. The source codes are available on
https://github.com/tianyili2017/ETH-CNN-Acceleration.

The main contributions of this paper are summarized as
follows. (1) We investigate the layer-wise computational com-
plexity of ETH-CNN, such that its most time-consuming
components can be accelerated, i.e., WPs in trainable layers.
(2) We propose a pruning scheme for ETH-CNN with opti-
mized complexity and RD performance, and obtain various
accelerated models for predicting the CTU partition. (3) We
develop a complexity control algorithm, enabling the average
complexity of CTU partition close to a given target with high
control accuracy and small RD loss.

II. RELATED WORKS

In recent years, extensive studies have been devoted to
HEVC complexity reduction. Considering that the CU parti-
tion consumes the most encoding time, most approaches focus
on early deciding the reasonable CU partition patterns and
skipping the other patterns. Other recursive processes nested
in the CU partition can also be accelerated, such as prediction
unit (PU) partition, PU mode selection and transform unit (TU)
partition. Among the complexity reduction approaches, early
works were heuristic ones [6]–[11], which utilize some inter-
mediate features to determine the CTU partition. For example,
Shen et al. [7] developed a CU partition approach by mini-
mizing the Bayesian risk, based on the RD cost and inter-
mode prediction error for each CU. Xiong et al. [9] and
Kim et al. [11] proposed deciding whether each CU is split,
according to the pyramid motion divergence and the number of
high-frequency key points, respectively. Later, some learning-
based approaches [12]–[18] were proposed to learn the opti-
mized criteria on CU partition, benefiting from substantial
training data. Specifically, Corrêa et al. [14] proposed three
early termination schemes via data mining, to simplify the RD
optimization process at CU, PU and TU levels. Zhu et al. [17]
explored several HEVC-domain features related to the CTU
partition, such as quantization parameter (QP), RD cost, num-
ber of coding bits. Providing these features, a binary and multi-
class support vector machine (SVM) algorithm was proposed
to predict both CU partition and PU mode with an off-on-line
learning mechanism. Recently, Mallikarachchi et al. [16] pro-
posed utilizing the RD cost and motion characteristics in inter-
mode to decide CU partition, via an online training scheme.

Although the above approaches achieve considerable com-
plexity reduction, the hand-crafted feature extraction can
hardly mine sufficient features from the video content. Thus,
it may lead to undesirable RD performance for encoding. Aim-
ing at this challenge, some deep-learning-based approaches
were proposed [19]–[22], which can automatically extract fea-
tures from large-scale video data. For example, Liu et al. [19]
proposed predicting the splitting probability of each CU,
through a four-layer CNN. Kuanar et al. [21] designed a
region-wise deep CNN integrated with textural classification
and object detection, for determining the CU partition. Kim
and Ro [22] combined a deep CNN with some auxiliary data,
containing the PU mode, intra-prediction angle and motion
vector. Despite the advantage of deep learning, most of the
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above methods are not efficient enough, i.e., the splitting
probability of only one CU can be predicted by a CNN in [19],
[20], [22]. To overcome this drawback, Xu et al. [23] proposed
a fast CU partition approach based on the ETH-CNN model,
which can be invoked only once to determine the partition
of all CUs in a whole CTU. Thus, both the computational
overhead of the approach and the overall encoding complexity
can be drastically reduced.

Although deep learning is beneficial to both complex-
ity reduction and RD performance, the running time of
DNNs cannot be ignored for real-time HEVC encoders, e.g.,
x265 [33]. Fortunately, numerous studies have shown that the
DNNs can be accelerated with little influence on prediction
accuracy. These studies can be broadly classified into three
categories: network pruning, low-rank decomposition and low-
bit quantization. In network pruning approaches [24]–[26],
some trivial parameters are set to zero, so that a large propor-
tion of connections and nodes can be removed. Specifically,
Han et al. [24] proposed a random network pruning approach,
where the parameters with magnitude below a threshold are
all pruned and then the remaining parameters are fine-tuned
to recover network performance. In addition to the random
pruning, a DNN can also be accelerated in a more structured
manner. For example, Lebedev and Lempitsky [25] attempted
to simplify a typical convolutional layer into multiplications of
thinner dense matrices, through group-wise regularizers. Later,
Wen et al. [26] proposed to regularize the structure of DNNs at
various levels, e.g., filter, channel and layer depth. Compared
with the fine-grained random pruning [24], the coarse-grained
structured pruning approaches [25], [26] are more hardware-
friendly, while suffering lower performance. For low-rank
decomposition, the basic idea is to apply tensor decomposition
to a fully connected (FC) layer or a convolutional layer. Some
representative techniques include singular value decomposi-
tion [27], Parafac/Candecomp decomposition [28] and Tucker
decomposition [29]. However, the low-rank decomposition is
not effective for convolutional kernel size smaller than 5 × 5.
For parameter storage, low-bit quantization approaches [30],
[31] can also be used to compress DNNs and reduce their
running time. However, these approaches do not change the
number of trainable parameters, and thus the potential for
time reduction is limited. Among the above three categories
of studies, we choose network pruning in this paper, because
it has a large potential to reduce the running time of a DNN
and is suitable for both convolutional and FC layers.

Our approach differs from the existing deep-learning-based
HEVC complexity reduction approaches in two main aspects.
(1) We propose to accelerate a state-of-the-art deep neural
network with a pruning algorithm, while no acceleration is
considered for a trained DNN in the existing HEVC com-
plexity reduction approaches. Compared with [19]–[22], [34],
[35], our approach can drastically reduce the complexity of
the DNN with better rate-distortion performance. It is in
accord with literatures [24]–[26], indicating that a properly
pruned DNN typically outperforms an un-pruned shallower
network with similar complexity. (2) We also design a control
algorithm, enabling the complexity of ETH-CNN to be con-
tinuously adjustable according to the computation resources

Fig. 2. Structure of ETH-CNN. All layers are illustrated by different colors
of boxes, each containing the layer name followed by its configuration. First,
for down-sampling layers, the value “×s” indicates that the luminance CTU
is down-sampled with the scale of s along both width and height dimensions,
via average pooling. Next, mean-removal is applied to the down-sized CTUs
in three branches, all conducted in 16 × 16 non-overlapping blocks. Then,
“p × p, q” for each convolutional layer represents q output channels with
non-overlapping p × p sized kernels. Finally, the value after the name of
each FC layer means the number of its output features.

in practice. As a result, the average complexity for predicting
the CTU partition can approach to any given target, with high
control accuracy and minimal RD loss.

III. ACCELERATION OF CTU PARTITION

A. Preliminary

The proposed approach for CTU partition acceleration is
based on the previous work [23]. In [23], a deep ETH-CNN
model has been proposed for predicting the CU partition of
each CTU, as illustrated in Figure 2. For intra-mode, the input
of ETH-CNN is a luminance CTU from its raw frame. For
inter-mode, the input luminance CTU is extracted from its
residual frame generated by a quick pre-encoding process,
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TABLE I

SUMMARY OF NOTATIONS

considering that the residue itself contains temporal correlation
across frames. At the beginning of ETH-CNN, the input CTU
is preprocessed with down-sampling and mean removal,2 to
reduce the computational complexity. Next, the preprocessed
data flow through three convolutional layers to extract low-
level textural features. The preprocessing and convolution
operations are conducted in three parallel branches {Bl}3

l=1,
enabling feature extraction at various spatial scales. Here,
l ∈ {1, 2, 3} represents the level of CU partition which decides
whether to split 64×64, 32×32 or 16×16 CUs, respectively.
Then, the feature maps from these three branches are concate-
nated into a vector, synthesizing the features from the whole
CTU. Afterwards, the concatenated vector is processed with
FC layers in the three branches {Bl}3

l=1, to extract the high-
level features. Because the QP also has a significant influence
on the CU partition, it is added as an external feature at
the last two FC layers, which enables ETH-CNN to adapt to
various QP values. Finally, the structured results in the form
of the proposed hierarchical CU partition map (HCPM) can be
obtained. Note that {Bl}3

l=1 correspond to levels 1, 2 and 3 of
HCPM, where each binary label represents the probability for
splitting a 64 × 64, 32 × 32 or 16 × 16 CU, respectively.

Reference [23] has made considerable efforts to reduce the
computational complexity, including: (1) the efficient HCPM
can run the trained model only once to predict the CU partition
in the whole CTU, (2) all convolutional operations are non-
overlapping, indicating that convolution is performed only

2Compared with the exact descriptions in [23], the order of two processes
(i.e., mean removal and down-sampling) is reversed in this paper. Such
reversion is able to reduce the computational complexity of preprocessing
layers, while keeping the results unchanged.

once for each pixel in the input feature map, and (3) the early
termination mechanism may skip the calculation of certain FC
layers when the CUs at level 1 or 2 are non-split. However,
the ETH-CNN model in [23] can hardly be implemented
in real time, especially for high-resolution videos. To solve
this problem, we propose a network pruning approach for
accelerating ETH-CNN, which can drastically simplify the
ETH-CNN model with negligible RD loss.

B. Problem Statement

Before introducing our network pruning approach, we first
investigate the computational complexity of ETH-CNN.
Table II shows the configuration of ETH-CNN, including the
number of floating-point operations at all layers. Considering
that the performance of ETH-CNN mainly depends on its
trainable WPs, the operations in this table are tabulated into
the following two categories.

• Weight-dependent operations (WDOs): the operations
that are in proportion to WPs, i.e., each redundant WP
being pruned can result in the reduction of network
complexity. WDOs contain the receptive fields in feature
maps convolved by their corresponding kernels at con-
volutional layers, and the feature vectors multiplied by
weight matrices at FC layers.

• Weight-independent operations (WIOs): the operations
that are not in proportion to WPs. The complexity of
the network may not be reduced when an individual
WP is pruned. WIOs include the input feature maps
added together to generate each output feature map at
convolutional layers, and also contain the bias para-
meters and activation functions applied to the output
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TABLE II

COMPUTATIONAL COMPLEXITY OF ETH-CNN

feature maps/vectors at both convolutional and FC layers.
In addition, all operations at preprocessing layers are
regarded as WIOs, because there is no WP.

Table II indicates that WDOs at trainable layers (i.e., convolu-
tional and FC layers) account for over 97.4% of floating-point
operations, which is far more than those accounted for by
WIOs. Therefore, we propose pruning redundant WPs at these
trainable layers to significantly reduce the overall complexity
of ETH-CNN. As shown in Table II, each convolutional or FC
layer is named as Ck−l or Fk−l , respectively, where k is the
index of a layer at level l. Here, the set of all trainable layers
is denoted as

L = {{Ck−l}3
k=1}3

l=1

⋃
{{Fk−l}3

k=1}3
l=1. (1)

For each trainable layer L ∈ L with n(L) WPs, a preset
retention ratio r(L) is applied to its WPs. Compared with only
one global retention ratio, presetting r(L) for all trainable
layers helps to accurately adjust the WP density for different
parts of the network, which reduces the randomness during
the pruning process. As a result, nP(L) = �n(L)r(L)� WPs
remain at layer L (“�·�” represents the top integral function).
Providing a combination of retention ratios R = {r(L)|L ∈ L}
for all layers, the average complexity-RD performance can
be measured on a sufficient number of validation video
sequences, i.e., the running time of ETH-CNN t (R) and
the Bjøntegaard delta bit-rate (BD-BR) b(R). Therefore, the

problem of ETH-CNN acceleration can be modeled as follows,

min
R

t (R) s.t. b(R) ≤ bTHR, (2)

where the threshold bTHR represents the largest acceptable
BD-BR for video compression. In the following subsection,
we focus on the scheme of network pruning, for solving the
problem of (2), such that the running time of ETH-CNN
can be reduced with desirable RD performance. Compared
with other network acceleration techniques [26]–[29],
[39]–[41], we choose to prune the ETH-CNN model on
weight parameters, so that the computational complexity of
ETH-CNN is flexibly scalable without changing the network
structure. Moreover, the scalability is essential for our control
algorithm (to be presented in Section IV), which enables
the average complexity of ETH-CNN to be continuously
adjustable in practice.

C. Network Pruning Scheme

Providing the configuration of ETH-CNN, the total number
of WPs without pruning is

N =
∑
L∈L

n(L). (3)

After network pruning with retention ratios R, the total
remaining number of WPs NP can be calculated by

NP =
∑
L∈L

nP(L). (4)
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Recall that n(L) and nP(L) denote the numbers of WPs at
layer L before and after pruning, respectively. Thus, the global
retention ratio of WPs is

rP = NP

N
. (5)

For a specific global retention ratio rP, the following task is
to determine the whole ratio set R that contains the values of
the retention ratios r(L) of layer L.

As shown in Table II, the number of WPs n(L) varies greatly
by layer and level, which should be adaptive to the specific
components of ETH-CNN. We choose to set a larger r(L) to
a layer with fewer WPs. It is because fewer WPs tend to be
more sensitive to pruning, in case that the network structure is
broken without sufficient connections among adjacent layers.
Additionally, in the proposed ETH-CNN, the prediction accu-
racy at level 1 is the most important, for alleviating the error
propagation downward across levels. Among all three levels,
the number of WPs for level 1 is fewer than that for level
2 or 3. Thus, setting larger r(L) to layers with fewer WPs,
also helps to maintain the prediction accuracy of level 1. The
above observations indicate that r(L) should have a negative
relationship to n(L). To this end, we introduce α ∈ (0, 1] to
adjust the r(L) for all layers at all three levels, formulated as

nP(L) = [n(L)]α s.t.
1

N

∑
L∈L

nP(L) = rP. (6)

In (6), α = 1 indicates all remaining WPs without pruning,
while α → 0 means that the network is sparse with few WPs
remaining. Moreover, for an arbitrary α ∈ (0, 1]

r(L) = [n(L)]α
n(L)

(7)

decreases with larger n(L), satisfying the above negative
relationship. Considering that rP is an increasing function of
α, the value of α in (6) can be calculated with the bi-section
method [42] when providing a specific rP. Then, the retention
ratios R for all individual layers can be obtained.

After R is determined, a corresponding model of ETH-CNN
can be generated. As a precondition, the initial retention ratios
of WPs are all 1 (training from scratch) or inherited from
those used in another model (fine-tuning). Then, the WPs at
all layers L are pruned during the iterations to update the WPs
in ETH-CNN. The procedure of network pruning is detailed
in Algorithm 1. During this process, the retention ratio rC(L)
for each layer exponentially decreases from its initial value
r0(L) to the target r(L). Without the abrupt change of rC(L),
such a gradual decrease helps to recover the performance of
ETH-CNN. As a result, a pruned ETH-CNN model is obtained
with an accurate ratio of WPs remaining.

D. Scheme Evaluation

To evaluate the complexity and RD performance of the
pruning scheme, we first generate both un-pruned and pruned
ETH-CNN models, using the database [23] for CU partition
of HEVC (named CPH database). The CPH database contains
2,000 raw images and 200 raw video sequences,3 with the

3The database for inter-mode has been enlarged from 111 sequences in [23]
to 200 sequences in this paper.

Algorithm 1 Network Pruning for ETH-CNN

corresponding labels of CU partition encoded by HM 16.5 [4]
at four QP values {22, 27, 32, 37}. Among them, 1,700 images
and 164 video sequences are used for training ETH-CNN
models, while other 100 images and 18 video sequences
are validation data for evaluation in this section. The rest
200 images and 18 sequences are the test data, to be used
in Section V. Note that the training, validation and test sets in
this database are all non-overlapping.

With the sufficient data, we train ETH-CNN models with
seven global retention ratios rP ∈ {100%, 20%, 5%, 1%, 0.5%,
0.2%, 0.1%} at both intra- and inter-modes, using the All
Intra (AI) (file encoder_intra_main.cfg) and the LDP (file
encoder_lowdelay_P_main.cfg) configurations [44], respec-
tively. For either intra- or inter-mode, one un-pruned ETH-
CNN model with rP = 100% (i.e., all WPs remaining) is
first trained from scratch. The learning rate is initially set to
0.01 and then decreased by 1% exponentially every 2, 000
iterations. There are in total 1, 000, 000 iterations. Then,
the other six models are generated sequentially, according to
the descending order of rP, i.e., the model for the i -th rP
value (except i = 1) is fine-tuned from the model for the
(i −1)-th rP value. Here, i ∈ {1, 2, . . . , 7} represents the index
of a global retention ratio, among the seven different values
of rP. When fine-tuning for each model, the initial learning
rate is set to be 0.01 and then decreases by 1% exponentially
every 1, 000 iterations. Here, the total number of iterations is
H = 500, 000, in which HP = 100, 000 iterations are required
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Fig. 3. Complexity-RD performance for ETH-CNN. (a) AI configuration.
(b) LDP configuration. The average BD-BR value for encoding with un-pruned
ETH-CNN model b1 is 1.549% and 1.487% at the AI and LDP configurations,
respectively. The absolute running time of un-pruned ETH-CNN model t1 is
1.053ms at either configuration.

to achieve the target retention ratios. The pruning frequency
fP is set to be 10. Other settings follow those in [23].

After obtaining the models with all seven rP values,
we evaluate the complexity-RD performance by integrating
each model into the accelerated HM encoder in [23]. Finally,
we record the normalized running time (NRT) of ETH-CNN t̃i
and the normalized BD-BR value (NBV) b̃i . These two metrics
reflect the complexity and RD performance of the pruning
scheme, respectively, and they are calculated as follows

⎧⎪⎨
⎪⎩

t̃i = ti
t1

b̃i = bi

b1
.

(9)

In (9), ti represents the absolute running time of the ETH-CNN
model for one CTU, with the i -th rP value, averaged over all
CTUs of 100 validation images or 18 validation sequences.
Correspondingly, bi is the average BD-BR value over these
validation data. Note that the BD-BR and running time are
both normalized for evaluating the relative performance of
each pruned ETH-CNN model, compared over the un-pruned
ETH-CNN model. Moreover, both the normalized metrics are
with similar magnitudes in terms of their values, necessary for
optimization process in our complexity control algorithm (to
be presented in Section IV). Figure 3 illustrates the changing
tendency of t̃i and b̃i at various global retention ratios. For the
intra-mode statistics, the un-pruned ETH-CNN model requires
1.053ms per CTU with negligible 1.549% of BD-BR on aver-
age. When an accelerated setting is applied (e.g., rP = 0.5%),
the running time of ETH-CNN is shortened to only 43.3μs
per CTU, meaning that the CTU partition of HEVC can be
predicted in real time for 1080p video at 45 frames per second.
Meanwhile, the average 2.559% BD-BR is still acceptable
during encoding. For inter-mode, similar statistical results are
achieved. Given the above analysis, the proposed pruning
scheme can accelerate the CTU partition in HEVC with a
significantly simplified ETH-CNN model, while maintaining
desirable RD performance.

IV. COMPLEXITY CONTROL FOR CTU PARTITION

In the previous section, we proposed seven accelerated
ETH-CNN models for accelerating CTU partition in HEVC.
Based on such acceleration, a control algorithm is proposed
in this section for more practical use, which enables the
computational complexity of ETH-CNN to be continuously
adjustable while still maintaining the RD performance. To this
end, the NRT of ETH-CNN needs to be controlled at the CTU
level within each individual frame. Moreover, a frame-level
control algorithm is also designed, guaranteeing the overall
control accuracy for a whole video sequence.

A. CTU-Level Control

As analyzed in Section III-D, the NRT of ETH-CNN ranges
from t̃7 to t̃1 under the 7 retention ratios. By applying different
retention ratios of ETH-CNN to the CTUs across a frame,
the average NRT of ETH-CNN can be more flexibly controlled
within this range. Assuming that the target NRT of ETH-CNN
is T̃C (satisfying T̃C ∈ [t̃7, t̃1]) for a frame, the goal is to ensure
the average NRT of ETH-CNN close to T̃C with negligible RD
loss, formulated as

min
m

B̃E s.t. T̃E = T̃C. (10)

In (10), vector m = [m1, m2, . . . , m7]T represents the quan-
titative proportion of CTUs at 7 retention ratios, satisfying∑7

i=1 mi = 1 and mi ≥ 0,∀i . Along with the change of
m, B̃E denotes the estimated NBV for this frame, and T̃E
denotes the estimated NRT of ETH-CNN averaged over all
CTUs of this frame. Let vectors b = [b̃1, b̃2, . . . , b̃7]T and
t = [t̃1, t̃2, . . . , t̃7]T be the NBV and NRT at 7 retention ratios
of ETH-CNN. Then, B̃E and T̃E can be calculated as{

B̃E = bTm

T̃E = tTm.
(11)

By substituting (11) into (10), we have the following
formulation

min
m

‖bTm‖2
2 s.t. tTm = T̃C. (12)

Using the Lagrange multiplier [45], the optimization prob-
lem (12) can be reformulated as

min
m

‖tTm − T̃C‖2
2 + λ‖bTm‖2

2, (13)

where λ is the multiplier for adjusting the importance of
RD performance over the complexity control accuracy. Equa-
tion (13) is a least square optimization problem, and it can
be solved using the ridge regression [46]. The closed-form
solution to (13) is

m = (t tT + λbbT + μI)−1 t · T̃C, (14)

where μ is the regularization coefficient. Here, vector m is
continuously valued, representing the quantitative proportion
of CTUs.

Considering a frame containing a finite number of CTUs,
the elements in m should be discretely quantized in practice.
Thus, for a frame containing M CTUs, another vector mQ
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with the same length as m is calculated, which represents the
quantized proportion of CTUs under 7 retention ratios

mQ = max{0,
1

M
�Mm − 1

2
�}. (15)

In the above equation, each element of mQ is assigned a
positive multiple of 1

M nearest to the corresponding element
in m. After discrete quantization, another constraint is still
to be considered, i.e., the summation of elements in mQ =
[mQ,1, mQ,2, . . . , mQ,7]T may be not exactly equivalent to 1.
Thus, we adjust the last one or several elements in mQ to
satisfy the one-sum constraint

∑7
i=1 mQ,i = 1, because the

last elements in mQ represent the proportion of CTUs with
the shortest NRT of ETH-CNN and have the least impact on
the estimated T̃E. With this adjustment, the proportion of CTUs
can be formulated as

mA = [mQ,1, · · · , mQ,i ′ , (1 −
i ′∑

i=1

mQ,i),

(6−i ′) zeros︷ ︸︸ ︷
0, · · · , 0 ]T, (16)

where i ′ denotes the largest index satisfying
i ′∑

i=1
mQ,i < 1.

Note that mA is appended with (6 − i ′) zeros to ensure that
mA and mQ have the same length (=7). As such, all elements
in one-sum vector mA are positive multiples of 1

M . Therefore,
mA is practically used as an available solution of m in (10),
which represents the proportion of CTUs under all 7 retention
ratios of ETH-CNN. Correspondingly, the numbers of CTUs
under 7 retention ratios can be solved within a frame.

B. Frame-Level Control

An estimation error of NRT for the ETH-CNN model
always exists between T̃E and T̃C, which is accumulative
across multiple frames. Therefore, we further propose a frame-
level control algorithm for alleviating the error accumulation,
thereby enhancing the stability of complexity control. Assume
that the global target NRT of ETH-CNN is T̃C for all frames
throughout the video sequence. For the 1st frame, i.e., frame
index u = 1, the target NRT of ETH-CNN T̃C(u) is naturally
set to be T̃C, and then the estimated NRT of ETH-CNN for this
frame T̃E(u) can be correspondingly calculated. Then, both
the target and estimated NRT for all subsequent frames can
be adaptively adjusted with the exponential moving average,
as detailed in Algorithm 2.

In this algorithm, the target NRT T̃ ∗
C (u) for a frame is

pre-adjusted according to the summation of estimated NRT
T̃E(u) over all previous frames (on Line 5 of Algorithm 2).
Such design avoids the estimation error accumulated across
frames. Additionally, with the moving average of T̃ ∗

C (u) over
the current frame and previous frames (Lines 6 and 7 of
Algorithm 2), the target NRT T̃C(u) is more stable. As a
result, both the target and estimated NRT T̃C(u) and T̃E(u) are
close to the global target NRT T̃C as frame index u increases,
and thus the frame-level complexity control for ETH-CNN
is achieved. It is worth mentioning that Algorithm 1 aims to
reduce the computational complexity of ETH-CNN [23], while
Algorithm 2 is used to control the reduced complexity to a
target, based on the complexity reduction of Algorithm 1.

Algorithm 2 Frame-Level Complexity Control for ETH-CNN

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
approach in terms of both acceleration and complexity control.
Section V-A presents the experimental settings. Sections V-B
and V-C evaluate the acceleration and complexity-RD perfor-
mance, by comparing our approach with other four state-of-
the-art approaches [16], [19], [22], [23]. Section V-D evaluates
the accuracy of complexity control. In Section V-E, we transfer
our approach to other configurations and standards. Finally,
the ablation study is analyzed in Section V-F.

A. Experimental Settings

For performance evaluation, we implemented our approach
in the HEVC reference software HM 16.5 [4]. The experiments
were conducted at both inter- and intra-modes of HEVC,
using the LDP (file encoder_lowdelay_P_main.cfg) and the AI
(file encoder_intra_main.cfg) configurations [44], respectively.
All 18 JCT-VC test sequences from Classes A∼E [47] were
encoded. Here, four QP values {22, 27, 32, 37} were chosen
to compress the test sequences. For acceleration performance,
the running time of all approaches was recorded during
encoding, and the BD-BR was calculated to assess the RD
performance. For complexity control, four target NRT values
T̃C ∈ {50%, 20%, 10%, 5%} were set at each mode and each
QP value, and then the gap between measured NRT of ETH-
CNN (denoted as T̃M) and T̃C was used to evaluate the control
accuracy. In CTU-level control, the Lagrange multiplier λ and
the regularization coefficient μ of (14) were set to be 10−4

and 10−3, respectively; in frame-level control, the exponential
decay rate β (mentioned in Algorithm 2) was set to 0.5. The
hyper-parameters L, μ and β were all tuned over the validation
set of the CPH database [23] for the desirable performance.
All experiments were conducted on a computer with an Intel
(R) Core (TM) i7-8700K CPU @3.2 GHz, 64 GB RAM and
the Ubuntu 16.04 (64-bit) operating system. Note that only
single CPU thread was used to measure the running time of
all approaches.
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TABLE III

COMPARISON OF COMPLEXITY REDUCTION APPROACHES FOR HEVC (LDP)

TABLE IV

COMPARISON OF COMPLEXITY REDUCTION APPROACHES FOR HEVC (AI)

B. Evaluation on Acceleration

First, we evaluate the acceleration performance via com-
paring the running time of our and other state-of-the-art
approaches [16], [19], [22], [23]. Among these approaches,
the deep ETH-CNN [23] and the six-layer CNN [22] can
be used for both inter- and intra-modes, while the non-
deep-learning approach [16] (i.e., content-adaptive CU size
prediction with online and offline model training) is only for
inter-mode and the four-layer CNN [19] only for intra-mode.
Tables III and IV report the complexity of all approaches at
inter- and intra-modes, respectively. Note that the results are
averaged over all test sequences of each class at four QPs.
As shown in Table III, the five pruned ETH-CNN models
provide 3.78∼24.15 times acceleration compared with [23] at
inter-mode. For all five classes of test sequences, the running
time of pruned ETH-CNN models is significantly shorter than
that of [22], and there exist at least four settings of our
approach (i.e., 0.1%∼1% WPs) quicker than [16]. As can
be seen from Table IV, there exist similar results for intra-
mode coding, where the ETH-CNN model in [23] can be
accelerated by 3.79∼22.71 times. Also, the running time of our
approach is always shorter than that of [22] and four settings of
our approach are quicker than [19]. In addition, the columns
“Encoding speed” and “Model speed” in Tables III and IV
indicate frames per second (fps) for the whole encoding
process and the model, respectively. These results indicate
that the pruned ETH-CNN models with ≤1% WPs can be
implemented in real time with more than 30 fps, for both the
LDP and AI configurations.

Next, we analyze the real encoding time of different
approaches, as compared in Table V. This table reports the
time overhead of each model (i.e., the DNN models in our
approach, [22] and [19], or the CU size decision model in [16])

TABLE V

ENCODING TIME ON HM 16.5

and the time for other processes. Note that the results in this
table are averaged over all 18 JCT-VC test sequences [47]
at QP values {22, 27, 32, 37}. For the LDP configuration,
the inference time of our model decreases from 0.396 s
to 0.016 s per frame, achieving real-time CTU partition.
Similarly, the pruning of model at the AI configuration also
leads to real-time CTU partition for faster encoding. Compared
with all other approaches [16], [19], [22], our approach with a
pruned model (i.e., WPs ≤ 20%) also consumes less encoding
time at both LDP and AI configurations. In summary, our
approach achieves desirable acceleration performance, faster
than the other approaches.

C. Evaluation on Complexity-RD Performance

In this section, we evaluate the complexity-RD performance
of our and other approaches. In addition to the running time,
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TABLE VI

PREDICTION ACCURACY FOR THREE LEVELS OF CU PARTITION

Tables III and IV also report the RD performance in terms
of BD-BR, averaged over all test sequences of each class
at four QPs. We can observe from Table III that pruning
off 80%∼99.8% of WPs results in at most 2.048% BD-BR
increase at inter-mode, i.e., 0.550% increment over the original
ETH-CNN approach (1.498% of BD-BR) [23]. This indicates
that our acceleration approach has slight degradation on RD
performance. For all classes, at least four settings of our
approach achieve both better complexity and RD performance
than [16] and [22]. For intra-mode, similar results can be
found in Table IV. The better performance of our approach
benefits from the higher prediction accuracy of the accelerated
ETH-CNN model, as shown in Table VI. Here, the results are
averaged over all 18 test sequences at QPs {22, 27, 32, 37}.
As the WPs are pruned off from 100% to 1% at the LDP
configuration, the average drop of accuracy is only 0.19%,
i.e., from 84.59% to 84.40%. Meanwhile, the time overhead
for each frame is shortened from 396.13 ms to 23.17 ms
on average, achieving 17 times of acceleration. For the AI
configuration, there exist similar results. Therefore, the model
in our approach can almost maintain its classification accuracy
with significant time acceleration.

Moreover, Figure 4 illustrates the curves of complexity-RD
performance under different acceleration ratios of ETH-CNN.
Here, the results are averaged over all 18 test sequences at
four QPs. For both inter- and intra-modes, RD performance
always degrades with higher acceleration ratio, in accord with
Tables III and IV. Nonetheless, such acceleration introduces
only little RD loss compared with the un-pruned model [23],
when the ETH-CNN model is not radically pruned, e.g.,
17∼20 times of acceleration within BD-BR of 2% and 4% at
inter- and intra-modes, respectively. For complexity control,
all four settings under different target NRT values T̃C ∈
{50%, 20%, 10%, 5%} achieve high overall accuracy. Also,
the red squares are always close to the blue curve in Figure 4,
indicating that complexity control leads to almost no bit-rate
overhead compared with the results without control.

To further show the change of performance across different
sequences, Table VII tabulates the standard deviation of model
time and BD-BR over all 18 JCT-VC test sequences. As seen
in this table, the standard deviation of model time for our
approach generally decreases at both LDP and AI configura-
tions, when WPs are pruned off from 20% to 1%. In addition,
the standard deviation values of BD-BR in our approach range

Fig. 4. Complexity-RD curves of our approach. (a) LDP configuration.
(b) AI configuration. For complexity control, “a1: a2 b%” in each squared
tag represents target NRT T̃C = a1, measured NRT T̃M = a2 and
BD-BR of b%.

TABLE VII

STANDARD DEVIATION OF MODEL TIME AND BD-BR FOR COMPLEXITY

REDUCTION OF HEVC

in 0.330%∼0.881% and 1.227%∼1.629% at LDP and AI
configurations, respectively, which are smaller than those of all
state-of-the-art approaches [16], [19], [22] and comparable to
those of the un-pruned model [23]. As an overall analysis, our
approach with 0.1%∼1% WPs has less standard deviation in
both model time and BD-BR, compared with [16], [19], [22].
Therefore, our approach can drastically accelerate the ETH-
CNN model with insignificant performance change across
different sequences.

D. Evaluation on Control Accuracy

In this section, we analyze the NRT values of ETH-CNN
to evaluate the performance of complexity control.
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TABLE VIII

MEASURED NRT OF ETH-CNN (LDP)

Tables VIII and IX present the measured NRT T̃M of
ETH-CNN at various target NRT T̃C for complexity control.
Here, each tabulated value represents the mean and standard
deviation of T̃M over all frames of a sequence. As such,
the statistics can reflect the fluctuation of NRT, in addition
to the overall average NRT during the whole encoding
process. Note that the longest and shortest T̃M for each
T̃C are highlighted in red and blue bold fonts, respectively.
We can see from Table VIII that the control error of
all cases is within 1.30% at inter-mode, with the largest
error in BlowingBubbles, i.e., T̃M = (51.30 ± 3.12)% for
T̃C = 50% at QP 22. The smallest error in this table is almost
zero, where the fluctuation of T̃M can be negligible, e.g.,

TABLE IX

MEASURED NRT OF ETH-CNN (AI)

T̃M = (50.01 ± 0.77)% for T̃C = 50% at QP 27. Throughout
this table, the control error for most video sequences at most
QP values (more than 98% of T̃M values in Table VIII) is less
than 1%. Also, the standard deviation of T̃M is always less than
1%. Such results indicate that our approach can accurately
control the NRT of ETH-CNN at inter-mode. The complexity
control is at little expense of bit-rate overhead, resulting in
BD-BR of 1.568%∼1.828% close to that of 1.542%∼1.733%
without control, under almost the same acceleration ratios.
For intra-mode, similar results can be found in Table IX,
where the control error of most cases is less than 2% and the
RD-performance is comparable to that without control.

It is worth mentioning that the frame-level complexity
control (Algorithm 2 in Section IV-B) is crucial to enhance
the control accuracy across multiple frames. Figure 5 plots
the curves of control error |T̃M(u) − T̃C| for both the LDP
and AI configurations, averaged over all test sequences at
four QP values {22, 27, 32, 37}. As shown in this figure,
the error is always within 2.5%, 2.5%, 1.0% and 1.0% after
encoding 10 frames, with the target NRT of ETH-CNN T̃C ∈
{50%, 20%, 10%, 5%}, respectively. Figure 6 illustrates the
fluctuation of T̃M across frames for the ParkScene sequence
as an example. As we can see, the measured NRT T̃M of
most frames is close to the target NRT T̃C. For each T̃C value,
although the measured NRT may be away from the target in
the initial frames, it quickly approaches to the target in few
successive frames. The initial fluctuation is due to the limited
precision of CTU-level control, while the frame-level control
can compensate it and make the NRT rapidly approach to the
target. For other video sequences and QPs, we can observe
similar results. In a word, the accuracy and convergence of
our complexity control algorithm have been verified.

E. Transfer to Other Configurations and Standards

1) Transfer to the Random Access (RA) Configuration:
We first transfer our approach to the RA configuration,
which is a widely used temporal configuration for HEVC.
The complexity-RD performance at the RA configuration
is shown in Table X. Here, the seven un-pruned and
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TABLE X

COMPARISON OF COMPLEXITY REDUCTION APPROACHES FOR HEVC (RA)

Fig. 5. Control error in the frame-level control algorithm. Here, T̃C represents
the target NRT of ETH-CNN for the whole video sequence, while T̃M(u) is
the measured NRT for each frame. Thus, the control error is reflected by
|T̃M(u) − T̃C|. (a) LDP configuration. (b) AI configuration.

pruned ETH-CNN models were retrained on the CPH
database [23] for the RA configuration. As seen in this
table, the average model time of our approach with ≤5%
WPs is less than that of all other approaches [16], [22],
[23]. For the overall encoding speed, all settings of our
approach require less time than other approaches. On the
other hand, the BD-BR of pruned ETH-CNN models in our
approach is negligible (i.e., 1.896%∼2.469% on average),
only 0.044%∼0.617% higher than the un-pruned ETH-CNN
model [23], which significantly outperforms [22] and [16].
Therefore, our acceleration approach performs much better
than the state-of-the-art approaches, in the complexity-RD
performance. Moreover, Table XI reports the performance of
our complexity control algorithm at the RA configuration of
HEVC. We can see from this table that the control error is
within 1.15%, and that the standard deviation of controlled
complexity is less than 2%. In terms of the RD performance,
the complexity control introduces little bit-rate overhead
(1.883%∼2.355%), in particular compared with that of
our acceleration approach (1.896%∼2.231%). Figure 6-(c)
shows the fluctuation of T̃M across frames for the ParkScene
sequence as an example. As we can see, the measured NRT
values (T̃M) of 50.60%, 19.46%, 9.83% and 5.23% are

TABLE XI

MEASURED NRT OF ETH-CNN (RA)

close to the target NRT values (T̃C) of 50%, 20%, 10% and
5%, respectively, with the control error less than 1%. For
each T̃C value, the measured NRT value of T̃M can quickly
converge to the target alongside encoded frames. As a result,
the overall fluctuation of T̃M is insignificant, with the standard
deviation of only 0.02%∼0.53%. We can further see from
Figure 6-(a), (b) and (c) that the results for the RA configura-
tion are similar to those at the LDP and AI configurations. It is
mainly because the quick convergence of T̃M benefits from the
frame-level complexity control for all configurations. From
the above results, both the control accuracy and desirable RD
performance of our control algorithm can be verified.

2) Transfer to the x265 Encoder: It is common knowledge
that the HM encoder is far from the practical use, due to its
heavy computational cost. Thus, our approach is transferred
to the x265 encoder [33], which is implemented much faster
than HM and widely used in practice. The results are tabulated
in Table XII, taking the “medium” setting of the original
x265 as an anchor. Here, the un-pruned model with 100%
WPs is not so efficient, because the inference time of the
model accounts for a large proportion of encoding time. In
contrast, the pruned model with 1% WPs can reduce the
encoding time from 1.838 s to 0.748 s per frame, as the model
itself is drastically accelerated from 0.396 s to 0.026 s for one
frame. Meanwhile, the average BD-BR of the pruned model is
4.439%, only 1.882% higher than the un-pruned model. Thus,
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Fig. 6. Fluctuation of measured NRT for ETH-CNN, for PackScene at QP
37. (a) LDP configuration. (b) AI configuration. (c) RA configuration. The
dashed lines represent four target NRT values, while the solid lines represent
the measured NRT values.

TABLE XII

ENCODING TIME ON X265 (AI)

the pruned model introduces little wrong decision of the CTU
partition. In addition, we have tested the “very fast” setting
of the original x265. Both the encoding time and the BD-
BR of our approach are significantly better than the “very
fast” setting of x265. Therefore, our acceleration approach
integrated into a slower setting of x265 can outperform its
built-in faster setting, in terms of both complexity and RD
performance.

3) Transfer to Versatile Video Coding (VVC): In our
experiments, we implement our approach to the latest VVC
standard for verifying its effectiveness. Here, we transfer
our acceleration approach from HEVC to VVC, at the AI
configuration as an example. In the training phase, both un-
pruned and pruned ETH-CNN models are trained according
to the CTU partition of the VVC standard. In the test phase,
each model is integrated into the VTM-7.0 encoder [48]

TABLE XIII

ENCODING TIME ON VVC (AI)

for deciding the quad-tree based partition structure of CTU,
while the binary- and ternary-tree based partition is kept
unchanged. Consequently, the encoding time per frame is
shown in Table XIII, taking the original VTM encoder as
anchor. From this table, we can see that both un-pruned
and pruned ETH-CNN models achieve considerable time
reduction with negligible increment on BD-BR. Compared
with the un-pruned ETH-CNN model with 100% WPs,
the pruned model with 1% WPs can accelerate the ETH-CNN
model by 14.7 times, as the inference time of our acceleration
approach is shortened from 0.396 s to 0.027 s per frame.
This means that our acceleration approach is able to achieve
real-time CTU partition for VVC at 30 fps. Meanwhile,
the average BD-BR of our pruned model is 1.474%, only
0.179% higher than the un-pruned model. The above results
verify the effectiveness of our approach on the VVC standard,
in terms of both complexity and RD performance.

F. Ablation Study

We further conduct an ablation study about network accel-
eration and complexity control to investigate the effectiveness
of our approach. For acceleration, the complexity of ETH-
CNN is reduced by pruning off its WPs while keeping the
number of layers unchanged. It is also possible to remove
some entire layers in ETH-CNN and the computation can be
simplified. In the ablation experiments, we remove the first FC
layer in all three levels, i.e., {F1−l}3

l=1, which has the highest
complexity in the original ETH-CNN. As such, the concate-
nated vector synthesizing convolutional features directly flows
through the second FC layer in all three levels, i.e., {F2−l}3

l=1.
Note that the simplified ETH-CNN can also be accelerated by
the proposed pruning approach, as mentioned in Section III-C.
Figure 7 compares the complexity-RD performance for both
original and simplified ETH-CNN models at inter-mode. Note
that the results are averaged over all 18 test sequences at
four QPs. At the same acceleration ratio, the original model
is always with smaller BD-BR than the simplified model,
indicating better complexity-RD performance. It is because
the original model is deeper than the simplified model to
extract high-level features, i.e., three compared to two FC
layers on each level. Therefore, it is reasonable to accelerate
ETH-CNN with unchanged number of layers, rather than to
directly remove certain layers.

For complexity control, the CTU-level control is a prereq-
uisite while the frame-level control is optional. To analyze
the effectiveness of frame-level control, we disable it in our
ablation study by setting T̃C(u) = T̃C(1),∀u, meaning that
the target NRT T̃C of ETH-CNN is constant for all frames
in a sequence. Table XIV shows the results for both settings
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Fig. 7. Ablation results for three most time-consuming layers of ETH-CNN
at the LDP configuration.

TABLE XIV

ABLATION RESULTS FOR FRAME-LEVEL CONTROL (LDP)

with and without frame-level control, averaged over all 18 test
sequences at four QPs. As we can see, frame-level control
can reduce the control error with smaller fluctuation of T̃M.
The above analysis has verified the effectiveness of frame-
level control, which can enhance the accuracy of the proposed
control algorithm.

VI. CONCLUSION

In this paper, we have proposed accelerating DNNs for
CTU partition with complexity control, to facilitate real-time
encoding of HEVC. As investigated on the computational
complexity throughout a newly-developed DNN model, most
calculations can be saved by pruning off its WPs. To this
end, we designed an adaptive pruning scheme to accurately
configure the retention ratios of pruned WPs. Using this
scheme, we obtained seven accelerated DNN models by setting
different retention ratios of WPs. As a result, these models
provide varying trade-off between complexity and prediction
accuracy. Moreover, we developed a control algorithm to
adjust the complexity of CTU partition close to a preset target.
It was achieved by applying different models to different CTUs
during HEVC encoding, enabling the average complexity of
CTU partition to be continuously adjustable. Such complexity
control is conducted at both the CTU- and frame-levels, ensur-
ing high control accuracy with optimized RD performance.
Finally, the experimental results verified that our approach is
able to predict the CTU partition for 1080p frames in real time
with only single thread of CPU, outperforming other state-
of-the-art approaches in terms of both acceleration and RD
performance.

For future works, some network pruning approaches with
structured sparsity (e.g., pruning WPs at the filter- or channel-
level) may be incorporated to accelerate the DNNs for CTU
partition of HEVC, facilitating more hardware-friendly imple-
mentation of DNNs. For example, the practical performance of
our approach on portable hardware, e.g., field programmable
gate array (FPGA) and digital signal processor (DSP), is to
be further explored as an interesting future work. In addi-
tion, our approach also has the potential for next-generation
video coding standards, e.g., the VVC standard with further
enhanced coding efficiency but extremely high complexity to
be accelerated.
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