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Abstract— An extensive study on the in-loop filter has been
proposed for a high efficiency video coding (HEVC) standard to
reduce compression artifacts, thus improving coding efficiency.
However, in the existing approaches, the in-loop filter is always
applied to each single frame, without exploiting the content
correlation among multiple frames. In this paper, we propose a
multi-frame in-loop filter (MIF) for HEVC, which enhances the
visual quality of each encoded frame by leveraging its adjacent
frames. Specifically, we first construct a large-scale database
containing encoded frames and their corresponding raw frames
of a variety of content, which can be used to learn the in-
loop filter in HEVC. Furthermore, we find that there usually
exist a number of reference frames of higher quality and of
similar content for an encoded frame. Accordingly, a reference
frame selector (RFS) is designed to identify these frames. Then,
a deep neural network for MIF (known as MIF-Net) is developed
to enhance the quality of each encoded frame by utilizing the
spatial information of this frame and the temporal information
of its neighboring higher-quality frames. The MIF-Net is built
on the recently developed DenseNet, benefiting from its improved
generalization capacity and computational efficiency. In addition,
a novel block-adaptive convolutional layer is designed and applied
in the MIF-Net, for handling the artifacts influenced by coding
tree unit (CTU) structure in HEVC. Extensive experiments show
that our MIF approach achieves on average 11.621% saving of
the Bjøntegaard delta bit-rate (BD-BR) on the standard test set,
significantly outperforming the standard in-loop filter in HEVC
and other state-of-the-art approaches.

Index Terms— High efficiency video coding, in-loop filter, deep
learning, multiple frames.

I. INTRODUCTION

RECENTLY, the rapid growth of high definition videos
has brought about increasing visual experience, but

meanwhile posing the challenge on transmitting or storing
the huge amount of video data. Addressing the challenge,

Manuscript received December 19, 2018; revised April 26, 2019; accepted
May 29, 2019. Date of publication June 14, 2019; date of current version
August 28, 2019. This work was supported in part by the National Natural
Science Foundation of China (NSFC) under Grant 61876013 and Grant
61573037, and in part by the Fok Ying Tung Education Foundation under
Grant 151061. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Jiwen Lu. (Corresponding author:
Mai Xu.)

T. Li, R. Yang, and Z. Wang are with the School of Electronic and
Information Engineering, Beihang University, Beijing 100191, China.

M. Xu is with the School of Electronic and Information Engineering,
Beihang University, Beijing 100191, China, and also with the Hangzhou
Innovation Institute, Beihang University, Beijing 100191, China (e-mail:
maixu@buaa.edu.cn).

C. Zhu is with the School of Information and Communication Engineering,
University of Electronic Science and Technology of China (UESTC), Chengdu
611731, China.

Z. Guan is with the School of Cyber Science and Technology, Beihang
University, Beijing 100191, China.

Digital Object Identifier 10.1109/TIP.2019.2921877

the Joint Collaborate Team on Video Coding (JCT-VC) has
proposed the high efficiency video coding (HEVC) stan-
dard [1] for video compression. Compared with its pre-
decessor H.264/advanced video coding (AVC) standard [2],
HEVC can save approximately 50% bit-rate on average. This
benefits from an integration of advanced coding techniques,
e.g., the flexible quad-tree-based structure of coding tree unit
(CTU), the increased number of intra-prediction modes and
the more precise interpolation for motion compensation. How-
ever, various compression artifacts (e.g., blocking, blurring
and ringing artifacts) [3] still present in compressed videos,
especially at low bit-rates. The artifacts mainly result from the
block-wise prediction and quantization with limited precision.
To alleviate the compression artifacts, in-loop filters were
adopted as crucial components in the recent video coding stan-
dards, via enhancing the quality of each encoded frame and
providing higher-quality reference for its successive frames.
Consequently, the coding efficiency can be further improved
by adopting the in-loop filters.

In total, three types of built-in in-loop filters were pro-
posed for the standard HEVC, including deblocking filter
(DBF) [4], sample adaptive offset (SAO) filter [5] and adaptive
loop filter (ALF) [6]. These in-loop filters are implemented
sequentially in the HEVC. Specifically, DBF is firstly used
to remove the blocking artifacts. Then the SAO filter reduces
sample distortion by adding an adaptive offset to each sample.
In addition, ALF was also considered to be implemented
after the SAO filter, which can further minimize the mean
square error between the reconstructed frames and the raw
frames based on Wiener filter. However, ALF cannot provide
visually better quality, and thus it was not adopted in the
final version of HEVC. Besides the built-in in-loop filters
for the HEVC, some other in-loop filtering methods were
also proposed, containing both heuristic and learning-based
methods. In heuristic methods [7]–[10], some prior knowledge
of video coding is utilized to build a statistical model of
compression artifacts, and then a filtering process is derived
for enhancing quality of each video frame based on the model.
In the most recent years, deep learning has been successfully
employed in many areas about data compression, such as video
coding [11], quality enhancement [12] and feature encod-
ing [13], [14]. Also, learning-based methods have successfully
enhanced the performance of in-loop filtering [15]–[20]. These
methods typically adopt convolutional neural networks (CNN)
to learn the spatial correlation of content within a frame patch.
For example, Dai et al. [16] introduced a variable-filter-size
residue-learning CNN (VRCNN) in place of the standard DBF
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and SAO at intra-mode. Compared with the single-path CNN,
variable filter sizes in [16] enable feature extraction at different
spatial scales, with less network complexity and accelerated
training process. Recently, Zhang et al. [20] have proposed a
residual highway CNN (RHCNN) suitable for both intra- and
inter-mode video coding, which is employed after the standard
SAO. However, none of the above learning-based methods has
employed multiple adjacent frames for in-loop filtering in the
HEVC. As measured in this paper, high fluctuation of visual
quality exists across the encoded frames in the HEVC, and
thus a low-quality frame can be enhanced by referring to its
adjacent higher-quality frames. Thus, it is possible to further
reduce the compression artifacts of each encoded frame in the
in-loop filters by using its adjacent frames, inspired by the
works in multi-frame super-resolution [21]–[27].

Based on deep learning, this paper develops a multi-frame
in-loop filter (MIF) for HEVC, replacing the original DBF and
SAO. Specifically, we first construct a large-scale database for
in-loop filtering in HEVC.1 Our database contains distorted
frames and their corresponding raw frames, generated from
182 raw video sequences at four quantization parameter (QP)
values. Next, we need to examine the quality fluctuation of
encoded frames in the HEVC. To this end, we design a
reference frame selector (RFS) to search for higher-quality ref-
erence frames given an unfiltered reconstructed frame (URF),
which is based on frame quality and content similarity. If RFS
provides sufficient reference frames, the URF flows through a
deep neural network for MIF (named MIF-Net) to utilize both
spatial information within one frame and temporal information
across frames. In MIF-Net, the content of each reference frame
is first aligned with the URF via motion compensation, and
then the URF is enhanced leveraging the information from
multiple frames. In the case that no sufficient reference frame
is selected by RFS, a simpler deep neural network for in-loop
filter (named IF-Net) is used to enhance the URF instead.
Both the MIF-Net and IF-Net are built upon the recently
developed DenseNet [28], benefiting from its great success
on the improved generalization capacity and computational
efficiency. Also, considering the blocking artifacts highly influ-
enced by the CTU partition structure, the proposed networks
are also adaptive to the coding unit (CU) and transform
unit (TU) partition in the HEVC, via varying convolutional
kernels at different locations of the CU and TU grids. Finally,
a mode selection scheme and the corresponding syntax are
also designed to select the best mode among the three possible
choices (i.e., MIF-Net, IF-Net and the standard in-loop filters),
ensuring the overall performance of our approach. Figure 1
shows an example of our MIF approach. Here, the current
182nd frame is encoded as a URF, and then the 177th and
178th encoded frames are selected as its reference, with higher
quality and similar content. Then, the URF and two reference
frames are input to MIF-Net. As a result, the content with
conspicuous artifacts (face and ear behind the bubble) in the
URF can be significantly enhanced by MIF-Net, leveraging
the information of two reference frames.

1Available at: https://github.com/tianyili2017/HIF-Database

Fig. 1. An example illustrating quality fluctuation of frames and the proposed
MIF approach.

This paper was previously presented in Data Compression
Conference 2019 [29], with the following improvements. First,
the training and validation sets of HIF database are enlarged
from 93 sequences in [29] to 160 sequences. In addition,
this paper thoroughly analyzes both frame quality and content
similarity of compressed HEVC, as the foundation of our MIF
approach. Next, we advance our MIF approach by developing
the syntax regulation. Finally, we provide more extensive
experimental results with various settings and the ablation
study, verifying the effectiveness and the generalization ability
of our MIF approach. In brief, the main contributions of this
paper are summarized below.

• We construct a large-scale database for learning the in-
loop filter of HEVC, with the potential to facilitate the
further research in designing in-loop filters for HEVC
encoding.

• We investigate the quality fluctuation of encoded frames
in HEVC, and design an RFS to find higher-quality
reference frames for URFs.

• We propose an MIF-Net and an IF-Net to prominently
enhance the frame quality via utilizing both spatial and
temporal information.

The rest of this paper is organized as follows. Section II
reviews the related works on HEVC in-loop filtering and multi-
frame super-resolution. Section III presents the constructed
HIF database and examines the frame quality fluctuation in
the HEVC. In Section IV, we propose the MIF approach for
in-loop filtering, and Section V regulates the corresponding
syntax. Section VI reports the experimental results to verify the
effectiveness of the proposed approach. Finally, Section VII
concludes this paper.

II. RELATED WORKS

In recent years, many in-loop filtering approaches have
been proposed to improve the coding efficiency of HEVC by
reducing the compression artifacts. Along with the develop-
ment of HEVC, three built-in in-loop filters were designed,
including DBF [4], SAO filter [5] and ALF [6]. Specifically,
DBF, simplified from that in H.264, is adopted as the first
in-loop filter of HEVC to remove the blocking artifacts at
prediction unit (PU) or TU boundaries. Afterwards, the SAO
filter refines samples in both smooth and textured areas.
To this end, the SAO filter divides the samples into different
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categories and then adds an offset to each sample according
to the category. In addition, ALF was also considered during
the development of HEVC, which estimates suitable filter
coefficients using Wiener filter at the encoder-end and then
signals the coefficients to the decoder-end. However, it was
not adopted in HEVC eventually, since it is unable to produce
visually better quality.

In addition to the above built-in filters of HEVC, some
other in-loop filtering methods have also been proposed. These
methods can be classified into two categories, i.e, heuristic
and learning-based methods. In heuristic methods [7]–[10],
the statistical characteristics of artifacts are modeled accord-
ing to some prior knowledge (such as textural complexity,
and the number of similar frame patches), and a filtering
process is then derived based on the model. For example,
Matsumura et al. [7] introduced a non-local means (NLM) fil-
ter to HEVC, which takes the weighted mean of non-local sim-
ilar frame patches for artifact reduction. The non-local design
compensates the disadvantage that the pre-existing in-loop
filters utilize only local information of frames. Ma et al. [9]
developed a group-based in-loop filter to exploit both local and
non-local similarities. With the obtained similarities, a recon-
structed frame is firstly divided into multiple patch groups, and
each group forms a matrix. Then, a soft or hard thresholding
is applied to the singular values of the formed matrix, for
achieving a sparse representation and meanwhile filtering out
compression artifacts. Also based on the singular value decom-
position of the group matrix, Zhang et al. [10] formulated
the in-loop filtering as an optimization problem with low-
rank constraint on every patch group, and then established
an adaptive soft-thresholding model for sparse representa-
tion. Although the above heuristic methods have considerably
enhanced the coding efficiency, the prior knowledge in these
methods need to be manually exploited. Thus, the handcraft
feature extraction results in inefficiency to some extent for the
above heuristic methods. Meanwhile, it is also intractable to
build a multi-variable filtering model, thus leading to limited
coding efficiency enhancement in the above methods.

More recently, a number of learning-based in-loop filters
have been proposed for HEVC, to address the shortcomings of
heuristic methods. The learning-based methods can automati-
cally learn the extensive features of compression artifacts and
optimize the in-loop filters with sufficient trainable parameters.
Since the input to the in-loop filter is always a frame patch
of two dimensions, these methods typically adopt CNN to
learn the spatial correlation of patch content. Specifically,
Park et al. [15] utilized a four-layer super-resolution CNN
(SRCNN) [30] to replace SAO in the encoding process.
Dai et al. [16] introduced a VRCNN in place of DBF and
SAO. Compared with a single-path CNN, variable filter sizes
in [16] are helpful to extract features in different spatial scales,
with less network complexity and accelerated training process.
As we have witnessed tremendous progresses in CNN, some
new CNN structures were also applied in in-loop filtering.
For example, Kang et al. [17] proposed a multi-modal/multi-
scale CNN to replace the existing DBF and SAO at intra-
mode. This architecture mainly contains two convolutional
sub-networks with different scales, also exploiting the CU and

TU boundaries as input. Meng et al. [19] developed a multi-
channel long-short-term dependency residual network (MLS-
DRN) for mapping a distorted frame to its associated raw
frame, inserted between DBF and SAO. Zhang et al. [20]
investigated the performance of residual units with various
internal structures, and proposed an RHCNN to build accurate
mappings between the reconstructed frames and their corre-
sponding raw frames. The RHCNN is employed as a high-
dimensional filter after SAO, without conflicting the present
in-loop filters.

It is also worth mentioning that the versatile video cod-
ing (VVC) standard is being developed by the Joint Video
Exploration Team (JVET), as the successor to HEVC. Some
proposals for JVET have already investigated deep-learning-
based in-loop filters for VVC, containing two main cat-
egories, i.e., sequence-dependent and sequence-independent
approaches. In the sequence-dependent approaches, a deep
neural network model is trained on-line for certain frames
and then used for in-loop filter for all frames of the same
video sequence. For example, Hsiao et al. [31] proposed
packing co-located luma and chroma patches together and
then processing them with a three-layer CNN, for predicting
the enhanced patches. The CNN is only trained on frames
with temporal ID of 0 or 1, for reducing the computation
overhead. Yin et al. [32] proposed training up to six CNN
models on 8 encoded frames in each random access segment.
As such, the best CNN model can be selected for each CTU
of all encoded frames. These sequence-dependent approaches
can learn a model adaptive to the specific content in a
video sequence, while suffering a shortcoming that the on-line
training inevitably introduces computation overhead. Instead,
sequence-independent approaches have been more widely
studied, in which a network model is trained offline and used
for any video sequence. Specifically, Kawamura et al. [33]
proposed a four-layer CNN with 3 × 3 taps, adopted after
the DBF of VVC. Lin et al. [34] took QP into account and
designed a deeper CNN, replacing the DBF and the SAO filter
at intra-mode. Exploiting more advanced network typologies,
Dai et al. [35] leveraged residue learning technique into a deep
CNN, and meanwhile some trainable parameters are shared
to save memory usage and prevent over-fitting. In addition,
Wang et al. [36] developed a dense residual CNN based in-
loop filter, with more flexible pathways across layers.

However, to the best of our knowledge, no existing work
has employed multiple adjacent frames for in-loop filtering in
the HEVC encoder. In this paper, we find it possible to further
reduce compression artifacts of each encoded frame by using
its adjacent frames, which is inspired by the existing works
in multi-frame quality enhancement and super-resolution pre-
sented as follow. Most recently, Yang et al. [37] have pro-
posed a decoder-end quality enhancement approach for HEVC.
In [37], a support vector machine (SVM) based peak quality
frame (PQF) detector first distinguishes PQFs from others,
and then a novel CNN structure is applied to enhance each
non-PQF according to its adjacent PQFs after motion com-
pensation. In addition to quality enhancement, more works
have been proposed for multi-frame super-resolution. In early
years, some traditional signal processing and machine learning
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methods were proposed in [21], [22] for multi-frame super-
resolution, increasing video resolution with reference to high-
resolution key frames. Afterwards, deep learning was widely
employed in this area. For example, Kappeler et al. [23]
developed a video super-resolution network (VSRnet), where
consecutive frames are firstly aligned together via motion
compensation and then fed into a CNN that outputs super-
resolved frames. Later, Li and Wang [24] proposed replacing
the VSRnet by a deeper network based on residual learning.
Recently, Huang et al. [25] proposed a bi-directional recurrent
convolutional network (BRCN) for efficient multi-frame super-
resolution, achieving both better performance and faster speed.
Besides, [26] and [27] also presented other deep-learning-
based super-resolution approaches for videos.

The above super-resolution methods [21]–[23], [25]–[27]
and the decoder-end quality enhancement approach [37] are
built on the assumption that, the same objects or scenes may
appear in several successive frames and thus the content in a
low resolution/quality frame can be inferred from its adjacent
higher resolution/quality frames. Accordingly we make the
first attempt to apply MIF at the encoder-end, which, we infer,
has a great potential to improve coding efficiency.

III. DATABASE FOR HEVC IN-LOOP FILTER

A. Database Construction

We construct a large-scale database for HEVC in-loop
filter (known as HIF database), to provide sufficient training
data for the proposed approach and facilitate the subsequent
works. For constructing the HIF database, 182 raw video
sequences were collected, consisting of 6 sequences from [38],
87 sequences from Xiph.org [39] and 89 sequences from the
Consumer Digital Video Library [40] in the Video Quality
Experts Group (VQEG) [41]. These 182 sequences can be
freely used for research without any commercial purpose.
Note that 18 sequences of Classes A ∼ E from the Joint
Collaborative Team on Video Coding (JCT-VC) test set [42]
are also used for evaluating our MIF approach. However,
these JCT-VC sequences are protected by copyrights, thus
not included in our HIF database. Despite that, our database
contains 182 downloadable video sequences, sufficient for
training a deep-learning-based in-loop filter. The details about
the sequences are listed in Table I. Considering that only
resolutions in multiples of the minimum CU size (8 × 8 by
default) are supported in HM [43], the NTSC sequences were
cropped to 720 × 480 by removing the bottom edges of the
frames. Moreover, the sequences longer than 10 seconds were
clipped to be 10 seconds, preventing the over-large video files
in our database.

All the sequences in our HIF database were divided
into non-overlapping sets of training (120 sequences), val-
idation (40 sequences) and test (22 sequences). Note that
the 22 test sequences were randomly selected from [38],
[39], [41] with five different resolutions and diverse content.
The sequences were all encoded by HM 16.5 [43] at four
QPs {22, 27, 32, 37}2 with the Low Delay P (LDP) (using

2In this paper, each mentioned QP represents the QP configured before
encoding (equal to the QP of the first I-frame in a sequence), despite the QP
may fluctuate during encoding.

TABLE I

SEQUENCES IN HIF DATABASE

encoder_lowdelay_P_main.cfg), the Low Delay B (LDB)
(using encoder_lowdelay_main.cfg) and the Random Access
(RA) (using encoder_randomaccess_main.cfg) configurations.
During the encoding procedure, all URFs (i.e., the recon-
structed frames before DBF and SAO) were extracted as
the input to MIF-Net, with their corresponding raw frames
being ground-truth. In addition, CU and TU partition results
for all the frames were also extracted as auxiliary features,
since the compression artifacts are highly influenced by the
block partition structure in HEVC. As a result, each frame-
wise sample in the HIF database consists of four parts, i.e., a
URF, its associated raw frame and two matrices indicating
the CU and TU depth throughout the frame. Finally, 12 sub-
databases were obtained corresponding to different QPs and
configurations. As indicated in Table I, each sub-database
contains 51,335 frames, and thus 616,020 frame-wise sam-
ples were collected for the whole HIF database. Note that
each frame-wise sample can be split into multiple block-wise
samples for data augmentation. Also, the position of each
block-wise sample within the frame-wise sample is alterable,
further increasing the variety of training samples in practice.
Therefore, the HIF database is ready for providing sufficient
data for our deep-learning-based MIF.

B. Data Analysis

In this section, we analyze the quality fluctuation and con-
tent similarity of encoded frames, which serves as a premise
for the proposed MIF. For such analysis, the default settings of
the LDP, LDB and RA configurations are used, where the hier-
archical coding of frames with periodical quality fluctuation is
an inherent feature. However, as far as we know, the periodical
quality fluctuation has not been quantified for designing the in-
loop filters of HEVC. The purpose of this section is to quantify
the frame quality and content similarity of compressed frames.
Firstly, the quality of video frames is measured by peak signal
to noise rate (PSNR), and the standard deviation (STD) of
PSNR is used to evaluate the quality fluctuation. Figure 2
shows the fluctuation of PSNR in two selected sequences
as examples, encoded at various configurations. It can be
observed that evident fluctuation always presents across the
frames in the same video sequence. For overall analysis,
we further calculate the STD of frame-level PSNR for each
sequence, as shown in Table II. Also, the PSNR increase by the
original DBF and SAO in HEVC (named IDS in Table II) is
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Fig. 2. PSNR fluctuation of two encoded sequences under various configu-
rations.

TABLE II

STD AND IDS OF PSNR (DB) FOR TRAINING
AND VALIDATION SEQUENCES

provided for comparison. Note that the STD and IDS of PSNR
are averaged on all the 160 training and validation sequences.
From this table, we can find that the average STD of frame
quality is 0.891 dB, 0.882 dB and 0.929 dB under the LDP,
LDB and RA configurations, respectively, which are much
larger than the 0.064 dB, 0.048 dB and 0.050 dB increase
by the DBF and SAO. This indicates the high fluctuation of
frames after HEVC encoding at different configurations. Such
high fluctuation of frame quality shows the potential to design
an MIF that may significantly outperform the original in-loop
filters in HEVC.

Besides quality fluctuation, content similarity is also a
crucial factor in the proposed approach, considering that the
motion compensation between a URF and its higher-quality
reference frames typically works when they share similar
content. The similarity is measured by calculating the correla-
tion coefficient (CC) of luminance and chrominance matrices
between two frames. Figure 3 shows the CC curves with
standard deviation at various distance of frames in encoding
order of HEVC, averaged on all the training and validation
sequences. For both luminance (i.e., Y) and chrominance (i.e.,
U and V) channels, the CC is always positive, revealing the
similarity in frame content. In addition, the three CC curves
with standard deviation are similar, which implies a coherence
of CC among Y, U and V channels. Although the frame
distance is calculated based on the encoding order rather than
displaying order, the increase of frame distance generally leads
to decreasing CC. It can also be observed that in most cases the

Fig. 3. Frame content similarity measured by CC at various frame distance.
The line represents the average CC for each channel, and the colored
foreground indicates the range within one standard deviation.

Fig. 4. Statistics of average number of higher-quality reference frames for
each URF, satisfying CC larger than a certain threshold.

CC is larger than 0.7 within 10 frames, indicating a prominent
similarity in frame content. Thus, adequate similar frames may
always be obtained for a URF via searching from its adjacent
frames.

Finally, we analyze the composition of available reference
frames for a URF in our MIF, considering both frame qual-
ity and content similarity. Figure 4-(a) counts the numbers
of higher-quality frames for each URF in terms of PSNR
increase, with both luminance and chrominance CC larger than
a certain threshold. The statistics in this figure are averaged
on all inter-predicted frames in the training and validation
sequences at four QP values {22, 27, 32, 37}. It can be found
that on average 9.9, 9.8 and 10.2 previously encoded frames
with CC > 0.7 and �PSNR > 0.5dB are available for a URF,
under the LDP, LDB and RA configurations, respectively. With
a tighter constraint of CC > 0.9, there are still 8.0, 7.9 and
8.3 previously encoded frames available with �PSNR > 0.5dB
under the three configurations, respectively. It can be expected
that, the reference frames of substantially higher quality (e.g.,
�PSNR > 2dB) are more helpful. Moreover, Figure 5 illus-
trates the subjective quality of reference frames for a URF,
taking the 69th encoded frame of sequence BalloonRising at
QP = 32 as an example. As shown in this figure, totally
42 higher-quality reference frames with CC > 0.7 are available
for the URF, and typically the higher PSNR also corresponds
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Fig. 5. Subjective examination of higher-quality reference frames with CC
> 0.7 for a URF. The reference frames are grouped by different ranges of
�PSNR, and the blue font in bracket represents the number of frames for each
group. In each frame, the CC values are calculated for Y, U and V channels,
respectively.

to the better subjective visual perception, especially in textured
and moving regions (e.g., ropes attached to the hot air balloon).
Also, in terms of content, the frames shown in Figure 5 appear
to be similar. Therefore, based on both objective and subjective
examination, it can be reasonably expected to find an adequate
number of reference frames of much higher quality and similar
to a URF.

IV. PROPOSED MIF APPROACH

A. Framework

The framework of our MIF approach is illustrated
in Figure 6. In the standard HEVC, each raw frame is encoded
through intra/inter-mode prediction, discrete transform and
quantization. Then, the predicted frame and the residual frame
form a URF. Subsequently, the URF is filtered with DBF and
SAO for quality enhancement. Different from the standard
HEVC, we propose a deep-learning-based in-loop filter to
enhance the URF, leveraging information from its neighboring
frames. First, RFS selects high-quality and high-correlated
frames as reference, to be introduced in Section IV-B. Next,
one of the two possible filtering modes is applied to the URF,
as described below.

• Mode 1: MIF-Net. Assume that M reference frames
are needed in MIF-Net. If RFS selects at least M
frames, the URF is processed by MIF-Net to gener-
ate an enhanced frame. MIF-Net consists of two parts,
i.e., motion compensation and quality enhancement. In
MIF-Net, each reference frame is first aligned with the
URF in terms of content, with a motion compensation
network. Then, all the aligned reference frames and the
URF are fed into a quality enhancement network to
output the reconstructed frame, utilizing both spatial and
temporal correlation of these frames. Note that the two
networks are combined into an end-to-end model, which
can be efficiently optimized with intermediate training.

• Mode 2: IF-Net. In the case that no enough reference
frames are found for the URF, another deep neural
network, IF-Net, is used instead as a simpler counterpart
of MIF-Net. In contrast to MIF-Net, IF-Net only takes
the URF as input without any consideration of multiple
frames. The architecture of IF-Net is similar to that of
the quality enhancement network in MIF-Net, and thus
most training parameters in IF-Net can be initialized by
the trained parameters in MIF-Net. Such design improves
the effectiveness of training procedure because it is not
necessary to train IF-Net from scratch.

In Modes 1 and 2, both MIF-Net and IF-Net are adaptive
to the CU and TU partition, in which the parameters of the
convolutional kernels are varied with respect to CU and TU
partition. More details about the architectures of MIF-Net and
IF-Net are introduced in Sections IV-C and IV-D, respectively,
and the training protocol is presented in Section IV-E. If MIF-
Net/IF-Net fails to improve frame quality, the standard DBF
and SAO can also be used as a supplementary mode. Finally,
the best mode among the three possible choices (i.e., MIF-
Net, IF-Net and the standard in-loop filters) is selected as
the actual choice, ensuring the overall performance of our
approach.

B. Design of RFS

In our approach, RFS is designed to select the reference
frames for each URF, serving as a basis of MIF. For the n-th
URF (denoted by FU

n ) in a video sequence, RFS examines its
previous N encoded frames as the reference frame pool, each
of which is denoted by FP

i (n − N ≤ i ≤ n − 1). Afterwards,
six metrics reflecting quality difference and content similarity
are calculated, as shown below.

• �PSNRY
i,n , �PSNRU

i,n and �PSNRV
i,n : PSNR increase

of FP
i over FU

n , for the Y, U and V channels, respectively.
• CCY

i,n , CCU
i,n and CCV

i,n : the CC values of frame content
between FP

i and FU
n for the Y, U and V channels.

Based on the above metrics, the procedure of RFS is shown
in Figure 7. RFS first divides the reference frame pool into
valid and invalid reference frames, and then all valid reference
frames are fed into RFS-Net to select M frames used for
enhancing the visual quality of FU

n . To be more specific,
a binary value Vi,n represents whether a reference frame from
the pool is valid. For at least one channel of FP

i , if the PSNR
increase is positive and the CC value is above a threshold τ ,
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Fig. 6. Framework of the proposed MIF.

Fig. 7. Procedure of RFS.

i.e., Vi,n = 1 in (1), FP
i is treated as a valid reference frame.

Vi,n =
⎧⎨
⎩

1, if
�

c∈{Y,U,V}
(�PSNRc

i,n > 0 ∧ CCc
i,n > τ)

0, otherwise.
(1)

If there exist at least M valid reference frames, the six metrics
for each valid reference frame FP

i satisfying n− N ≤ i ≤ n−1
and Vi,n = 1 form a 6-dimensional vector, and then they are
input to a two-layer fully connected network (termed by RFS-
Net) to generate a scalar R̂i,n as output, illustrated in Figure 8.
Here, R̂i,n is a continuous variable representing the potential of
FP

i being the reference for FU
n . A larger R̂i,n indicates that FP

i
has more potential than other reference frames for enhancing
FU

n . Note that R̂i,n is the predicted value by RFS-Net, with
the corresponding ground-truth value denoted by Ri,n .

The procedure to generate Ri,n and train RFS-Net is pre-
sented in the following. Different from a randomly selected
training batch for a typical neural network, the samples in
one training batch for RFS-Net are extracted from the valid
reference frames for only one URF. Such organization of
samples is on account that all predicted values {R̂i,n |n − N ≤
i ≤ n − 1, Vi,n = 1} by RFS are used for enhancing one
certain URF FU

n , without any consideration of other URFs.

Fig. 8. Illustration of RFS-Net. The input is a 6-dimensional vector
representing PSNR increase and CC of frame content, followed by 12 hidden
nodes and 1 output node generated by the two layers in sequence. Both
layers are activated with parametric rectified linear units (PReLU) [45],
and the output of all samples in the same batch is processed with Z-score
normalization, for obtaining the normalized R̂i,n .

In RFS-Net, the ground-truth potential {Ri,n |n − N ≤ i ≤
n − 1, Vi,n = 1} should reflect the quality of valid reference
frames after these frames are aligned with FU

n . To achieve
the content alignment, we apply the motion compensation
network in MIF-Net to each valid reference frame FP

i for FU
n

(satisfying n − N ≤ i ≤ n − 1 and Vi,n = 1) to generate
a compensated frame FC

i . Then, the difference between FC
i

and the n-th raw frame (denoted by Fn) is able to quantify
Ri,n , i.e., the ground-truth potential of FP

i for enhancing FU
n .

Here, normalized PSNR is used to calculate Ri,n for each valid
reference frame, formulated as

Ri,n = PSNR(FC
i , Fn) − μPSNR(Fn)

σ PSNR(Fn)
, (2)

where PSNR(·, ·) denotes the PSNR between a compensated
frame and its corresponding raw frame, and μPSNR(Fn) and
σ PSNR(Fn) denote the mean value and the standard deviation
over {PSNR(FC

i , Fn)|n − N ≤ i ≤ n − 1, Vi,n = 1}, respec-
tively. After normalization, the ground-truth values in one
batch are with the mean value of 0 and the standard deviation
of 1, in accord with the normalized predicted values {R̂i,n |n −
N ≤ i ≤ n − 1, Vi,n = 1}. Therefore, Ri,n and R̂i,n are of
similar scale, and the �2-loss can be used to measure the differ-
ence between them. Considering the whole training batch for
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Fig. 9. Architecture of MIF-Net/IF-Net. The difference between MIF-Net and IF-Net is shown by different colors of arrows. Note that the background
slashes in dense units indicate that the parameters of IF-Net can be initialized with those from MIF-Net.

enhancing FU
n , the loss function of RFS-Net is formulated as

LRFS =
�

n−N≤i≤n−1
Vi,n=1

(Ri,n − R̂i,n)2, (3)

which is optimized by the Adam algorithm [44]. Using the
trained RFS-Net model, the reference potential for all the
valid frames {R̂i,n |n − N ≤ i ≤ n − 1, Vi,n = 1} can be
obtained. Then RFS selects M frames as output, denoted
by {FR

m,n}M
m=1, where the index m indicates that FR

m,n is the
frame with the m-th highest R̂i,n among all valid reference
frames. In the exceptional case that the number of valid
reference frames is less than M , RFS does not work and
IF-Net is used to enhance FU

n instead.

C. Architecture of MIF-Net

In our approach, the quality of each URF is enhanced
by either MIF-Net or IF-Net, depending on the number of
frames selected by RFS. This section mainly focuses on the
architecture of MIF-Net, and the difference between IF-Net
and MIF-Net is to be specified in Section IV-D. Figure 9 illus-
trates the overall architecture of MIF-Net/IF-Net. As shown in
this figure, MIF-Net takes a URF FU

n and its M reference
frames {FR

m,n}M
m=1 as the input, to generate the enhanced

frame FE
n as the output. MIF-Net synthesizes information from

M parallel branches {Bm}M
m=1, with each branch Bm dealing

with the corresponding reference frame FR
m,n . In branch Bm ,

the reference frame FR
m,n is first aligned with the URF FU

n via
a motion compensation network, to produce a compensated
frame, denoted by FC

m,n . Next, FU
n and FC

m,n are processed with
a novel convolutional layer guided by the CTU partitioning
structure of FU

n (named block-adaptive convolutional layer),
to explore low-level features from different sources and merge
the features with consideration of the CU and TU partition.
Then, the low-level features flow through two successive
DenseNet-based units (named dense units) [28] to extract
more comprehensive features within Bm . Finally, the extracted
features from all the M branches are concatenated together
and further processed with two dense units to extract high-
level features. For ease of training, the output of the last
dense unit (denoted by F�

n ) is regarded as a difference frame,

and the enhanced frame FE
n is the summation of F�

n and
FU

n . The details of MIF-Net components are presented in the
following.

Motion compensation network. In general, the content
of a reference frame FR

m,n differs from that of FU
n due to

temporal motion across frames. Therefore, we propose a
motion compensation network based on the spatial trans-
former motion compensation (STMC) model [26], for content
alignment between FR

m,n and FU
n , illustrated in Figure 10-(a).

In [26], the STMC model takes both FR
m,n and FU

n as input
to obtain a compensated frame as output, denoted by FSTMC

m,n .
The STMC consists of two paths (×4 and ×2 down-scaling
paths) for predicting coarse and fine motion vector (MV) maps
between the two input frames, respectively. Each path contains
a succession of convolutional layers and an upscaling layer,
and the fine MV maps from the ×2 down-scaling path are
applied to FR

m,n for outputting FSTMC
m,n . In the STMC, the ×2

and ×4 down-sampling is capable for estimating various scales
of motion. However, the accuracy of the STMC is limited
due to down-sampling, and the architecture of the STMC can
also be improved. To address this issue, we propose a motion
compensation network, with the following advancements over
the STMC in [26].

• Besides the ×2 and ×4 down-scaling paths, a full-scale
path without down-sampling is added to enhance the
precision of MV estimation. As shown in Figure 10-(a),
FR

m,n , FU
n , FSTMC

m,n and the ×2 MV maps from the STMC
are concatenated together and input to this path. After-
wards, they are processed through convolutional layers to
generate the final MV maps. All convolutional layers on
this path are with stride of 1, keeping the size of feature
maps the same as FR

m,n and FU
n .

• Inspired by the ResNet [46], in total 6 shortcuts are
added next to the convolutional layers for higher network
capacity and ease to be trained. Note that both identity
shortcuts and projection shortcuts are used, depending on
the numbers/sizes of feature maps before and after each
shortcut.

• All rectified linear units (ReLU) [47] activating convo-
lutional layers in the STMC are replaced by PReLU,
to adaptively learn the rectifying parameters [45].
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Fig. 10. Network details. (a) Motion compensation network. (b) Dense unit.
For convolutional layers, “p × p, q” represents q output channels with p × p
kernels. Note that the convolutional stride is set to 1 by default, except that
explicitly mentioned in certain layers.

With the above modifications, the full-scale path outputs
two MV maps, MX

m,n and MY
m,n , denoting the horizontal

and vertical motion of all pixels from FR
m,n to FU

n . Finally,
the compensated frame FC

m,n is derived by

FC
m,n(x, y)=Bil{FR

m,n(x + MX
m,n(x, y), y +MY

m,n(x, y))}, (4)

where x and y are coordinates of a pixel, and Bil{·} represents
the bilinear interpolation considering that the motion may be
of non-integer pixels.

Block-adaptive convolutional layers. In each branch of
MIF-Net, the compensated frame FC

m,n and the URF FU
n are

processed with a convolutional layer adaptive to the CU and
TU partition in HEVC. The input to this layer is a concatena-
tion of three feature maps, including FC

m,n , FU
n and FC

m,n −FU
n .

In addition to FC
m,n and FU

n , FC
m,n − FU

n is also meaningful.
It is because FC

m,n − FU
n reflects the reliability of FC

m,n as a
reference frame for FU

n , since an overlarge distance between
two co-located parts of FC

m,n and FU
n may indicate ineffective

motion compensation at these parts. In this layer, the CU and
TU partition for FU

n is represented by two feature maps, i.e., Cn

and Tn , respectively. The size of Cn or Tn is equal to that of
FU

n , and the values in each map are assigned according to the

partition structure. If pixel (x, y) is on the boundary of a CU
or TU, the corresponding value Cn(x, y) or Tn(x, y) is set
to 1. Otherwise, the value is set to -1. Afterwards, the target
of a block-adaptive convolutional layer is to output a certain
number of feature maps, providing three feature maps as the
input and two feature maps as the guidance. For this problem,
we present a guided convolution operation in Algorithm 1,
assuming that PI, PG and PO feature maps are used as
the input, guidance and output, respectively. This algorithm
consists of two main procedures:

• Intermediate map extraction (line 1): to extract various
features from the guidance features maps, meanwhile
ensuring the number of intermediate feature maps equal
to the output channels PO.

• Convolution with intermediation (lines 2∼9): to conduct
the convolution in which the weights are adaptively
adjusted according to the intermediate feature maps.

Compared with a typical convolutional layer where the space-
irrelevant weights are shared across the whole feature map,
the major advancement of this algorithm lies in the space-
relevant weights generated according to the guidance (see
line 5 in Algorithm 1), contributing to a higher network
capacity. Moreover, because of only convolution rather than
full-connection is added for intermediate map extraction,
the number of trainable parameters is not sharply increased,
which results in little risk of over-fitting. For each block-
adaptive convolutional layer in MIF-Net, PI = 3 and PG = 2
as described above, and the number of output maps is set to
be PO = 12.

Dense units for quality enhancement. In [28],
Huang et. al. have proposed an efficient variant of CNN,
named DenseNet, which introduces different length of
connections between the input and output. Compared with a
plain CNN or the ResNet [46], the efficiency of DenseNet
to train a deep network mainly results from the alleviation
of vanishing gradients, the encouragement of feature reuse
and the reduction of computational complexity. Considering
these compelling advantages, totally (2M + 2) dense units are
adopted in our MIF-Net for quality enhancement, i.e., 2 dense
units in each branch and 2 dense units at the end of MIF-Net
synthesizing features from all the M branches. Here, all
the dense units are with the same structure, as illustrated
in Figure 10-(b). Each dense unit contains 4 convolutional
layers, and before each layer, features from all preceding
layers are concatenated together. Thus, a dense unit includes
10 inter-layer connections, much more than a 4-layer plain
CNN with only 4 connections. At each layer in the dense
unit, the number of output channels is 12, except the last
layer in the final dense unit which outputs only 1 channel as
the difference frame between FE

n and FU
n .

D. Difference Between MIF-Net and IF-Net

The previous section has elaborated our MIF-Net in detail.
In the following, we introduce the IF-Net as a simpler counter-
part of MIF-Net, adopted in the case that no enough reference
frames are found for the URF. The only difference between
IF-Net and MIF-Net lies in the absence of M reference frames
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Algorithm 1 Guided Convolution

for FU
n in IF-Net. Therefore, only the quality enhancement

network without motion compensation is adopted in IF-Net,
as illustrated with the red arrows in Figure 9. Compared
with MIF-Net, only one branch B1 without the compensated
frame exists in IF-Net, and the concatenation synthesizing
M branches is omitted. Despite the simpleness, a guided
convolutional layer and four consecutive dense units still exist
in IF-Net, ensuring sufficient network capacity for quality
enhancement.

E. Training of MIF-Net and IF-Net

With both motion compensation and quality enhancement in
M branches, MIF-Net is an end-to-end deep neural network
that may be difficult to be trained by directly minimizing the
difference between FE

n and Fn . To solve this problem, we pro-
pose to train MIF-Net with intermediate supervision [48], via
introducing two loss functions into MIF-Net to optimize the
whole network at different stages. First, the difference between
FU

n and each of M compensated frames FC
m,n can measure the

performance of the motion compensation network, and thus it
is defined as the intermediate loss

LINT = 1

M

M�
m=1

�FC
m,n − FU

n �2
2, (5)

where �·�2 represents the �2-norm difference between two
frames. Next, the �2-norm difference between FE

n and Fn

indicates the performance of the whole MIF-Net, and the
global loss is defined as

LGLO = �FE
n − Fn�2

2. (6)

Combining the above two loss functions, the loss L for our
MIF-Net is the weighted summation of them, formulated as

L = α · LINT + β · LGLO. (7)

Here, α and β are changeable weights, and L is optimized
by the Adam algorithm [44]. On account that the optimal
performance of quality enhancement relies on the well-trained
motion compensation network, the intermediate loss LINT
should be optimized with a larger weight by setting α � β at

early stage of training. After LINT converges, we set β � α
instead, in order to emphasize more on optimization of the
global loss LGLO. Through the two stages of training, the URF
FU

n can be significantly enhanced using M selected reference
frames. In contrast to MIF-Net, the training procedure of
IF-Net is easier, considering the absence of motion compen-
sation. In IF-Net, the trainable parameters in three dense units
can be initialized by those in well-trained MIF-Net, with no
need to train from scratch. In addition, the loss of IF-Net is the
same as LGLO in MIF-Net, which can be directly optimized
by the Adam.

V. SYNTAX REGULATION

In our MIF approach, some control data about RFS and
filtering mode selection should be shared by both the encoder
and decoder. Therefore, the corresponding syntax is regulated
for each URF FU

n , as listed in Table III. The details of syntax
regulation are presented in the following.

Syntax for RFS. First, MIF_Net_on signals whether
MIF-Net is adopted, depending on the number of reference
frames selected by RFS. If MIF_Net_on is true, Ref_index
is activated to represent the indices of M reference frames,
selected from the N-frame pool by RFS. To save the
bit-rate, only the distance between a reference frame and
FU

n (i.e., |i − n| satisfying n − N ≤ i ≤ n − 1) is
encoded, rather than encoding the absolute frame index n.
Consequently, the number of bits for encoding Ref_index
is M

�
log2 N

�
.

Syntax for filtering mode selection. In addition to RFS,
the selection of filtering mode is also encoded to signal
whether the URF is processed by a proposed network or by the
standard in-loop filters. For each channel c ∈ {Y,U,V}, assume
that the size of a frame is Wc × Hc. Considering that the same
filtering mode may not be suitable for different patches of a
frame, the selection is conducted in pc × pc patches. Here,
a frame can be divided into

	
Wc
pc



·
	

Hc
pc



non-overlapping

patches, and the syntax Mode_c[u][v] denotes whether a
proposed network is used for the (u, v)-th patch. If the quality
of a patch processed by MIF-Net or IF-Net is higher than
that filtered by the standard DBF and SAO, Mode_c[u][v]
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TABLE III

SYNTAX REGULATION

is set to true, and otherwise set to false. Considering the
adjustable patch width, a smaller pc indicates more refined
mode selection prone to better frame quality, but introduces
more bit-rate redundancy due to the encoded bits of the syntax
Mode_c. In contrast, a larger pc means fewer bits for the
syntax, while leading to lower frame quality. Therefore, there
exists a trade-off to choose a reasonable pc, and the value of
pc is discussed in Section VI-A.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our MIF
approach through experimental results. Section VI-A presents
the settings in the experiments. In Section VI-B, we eval-
uate both objective and subjective performance of our MIF
approach at the RA configuration, compared with the HM
baseline and two state-of-the-art approaches, [10] and [20].
In Section VI-C, we further verify the effectiveness and gen-
eralization ability of our MIF approach with various settings.
Finally, the ablation study is conducted in Section VI-D.

A. Settings

Experimental configurations. In our experiments, all
approaches for in-loop filtering were incorporated into the
HEVC reference software HM 16.5 [43]. The RA config-
uration was applied using the file encoder_randomaccess_
main.cfg [49] for both network training and performance
evaluation at four QPs, {22, 27, 32, 37}. The 120 training
sequences in our HIF database were used to train the networks,
and the hyper-parameters were tuned over the 40 validation
sequences. Note that all video sequences are in YUV format.
During the training phase, only the Y channel was input to
both MIF-Net and IF-Net. It is because the Y channel is
luminance that contains most visual information. Therefore,
during the test phase, the trained models on the Y channel were
directly used on all three channels. In the test stage, we set
the patch width (introduced in Section V) to be pY = pU =
pV = 256. For performance evaluation, the Bjøntegaard
delta bit-rate (BD-BR) and Bjøntegaard delta PSNR (BD-
PSNR) [50] were measured to assess the rate-distortion (RD)
performance. The evaluation was conducted on 40 video
sequences in total, containing all 18 sequences of the JCT-VC
standard test set [42] and the 22 test sequences in our
HIF database, named as the supplementary test set. Note
that the test sequences were non-overlapping with both
training and validation sequences. All experiments were

TABLE IV

HYPER-PARAMETERS FOR NETWORKS

conducted on a computer with an Intel (R) Core (TM)
i7-7700K CPU @4.2 GHz, 32 GB RAM and the Ubuntu
16.04 (64-bit) operating system. In addition, a GeForce
GTX 1080 GPU was used to accelerate the training
procedure.

Network settings. For our approach, one MIF-Net model
and one IF-Net model were trained for each evaluated QP,
while all QPs shared the same trained RFS-Net model.
The tuned hyper-parameters for these networks are listed
in Table IV. For training the models of MIF-Net and IF-Net,
all frames were segmented into 64 × 64 patches. Considering
the efficiency of training, the IF-Net or MIF-Net model at
QP = 32 was trained from scratch, while the models at QPs
{22, 27, 37} were fine-tuned from the trained model.

B. Performance Analysis

Objective RD performance. First, we evaluate the objec-
tive RD performance of our MIF approach in terms of the
BD-BR and BD-PSNR, compared with the HM baseline
(standard DBF and SAO), a heuristic approach [10] and a
learning-based approach [20]. For a fair comparison, the mod-
els of [20] were re-trained on our HIF database. Table V
tabulates the RD results of all four approaches, in which the
original HM without the in-loop filter is used as an anchor.
As indicated in Table V-(a), the BD-BR of our MIF approach
is −11.621% averaged over the 18 standard test sequences,
outperforming −5.031% of the DBF and SAO, −6.295%
of [10] and −9.227% of [20]. In addition, Table V-(b) shows
that the average BD-BR of our approach is −12.607% over
the supplementary test set, and it also significantly outperforms
those of other three approaches, i.e, −4.449% of the DBF and
SAO, −5.746% of [10] and −9.942% of [20]. In terms of
BD-PSNR, our approach achieves 0.391 dB in the standard
test set and 0.502 dB in the supplementary test set, also
considerably better than the DBF and SAO (0.162 dB and
0.167 dB), [10] (0.201 dB and 0.219 dB) and [20] (0.305 dB
and 0.392 dB). In a word, our MIF approach achieves the
best RD performance among all four approaches. The possible
reasons of such outperformance include: (1) the utilization
of multiple adjacent frames, (2) the effective dense blocks
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TABLE V

RD PERFORMANCE OF IN-LOOP FILTERS (RA CONFIG.). (a) PERFORMANCE ON THE JCT-VC TEST SET.
(b) PERFORMANCE ON THE SUPPLEMENTARY TEST SET

and (3) the proposed block-adaptive convolutional layers.
Their contributions in the RD gain are to be analyzed in
Section VI-D.

Subjective visual quality. Next, we compare the subjective
quality of all four approaches. Figure 11 illustrates some
regions of compressed video sequences as examples, com-
pressed at QP = 37 and the RA configuration. For Race-
Horses, it can be observed that the edges of the horse tail are
severely blurred when compressed by the DBF and SAO, [10]
and [20]. In contrast, the horse tail is with clearer edges after
being enhanced by our MIF approach. Also, on the pedestrians
in PeopleOnStreet and the hand in FourPeople, the blocking
artifacts are significantly reduced by our approach, compared
with other three approaches. These examples show that our
approach is probably with better visual quality of compressed

videos, and the quality enhancement may be more observable
at moving regions of frames. Moreover, we have also uploaded
the bitstream files of 22 test sequences online,3 encoded by
both our MIF approach and the standard HEVC. With the
corresponding decoders, the visual quality of all the frames
can be observed for our MIF approach.

Time complexity. In addition, we analyze the complexity
overhead introduced by our MIF approach and other adapted
in-loop filters [10], [20]. First, the running time to encode one
frame in HM [43], denoted by THM, is provided in Table VI.
Based on this, we have also measured the time overhead Tf
introduced by each in-loop filter and tabulated the ratio Tf

THM

in the rest of Table VI. A larger ratio Tf
THM

indicates relatively

3Available at: https://github.com/tianyili2017/HIF-Database
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Fig. 11. Comparison of subjective visual quality. (a) RaceHorses (Class C). (b) PeopleOnStreet (Class A). (c) FourPeople (Class E).

TABLE VI

TIME COMPLEXITY OF IN-LOOP FILTERS (RA CONFIG.)

more time overhead of an in-loop filter. Note that the results in
this table are averaged over all JCT-VC test sequences with the
same resolution. Considering that learning-based in-loop filters
can be significantly accelerated by a GPU, both the results with
and without GPU are provided, for our MIF approach and the
RHCNN [20]. Here, the above learning-based approaches were
implemented at the open-source machine learning framework
TensorFlow (TM) [52]. We record the computational time of
only using CPU and using CPU+GPU, respectively, for our
approach and [20]. We can observe from Table VI that the
heuristic approach [10] introduces the least time overhead
among the three approaches, when implemented with only
CPU. However, benefiting from the GPU acceleration, our
MIF approach and the RHCNN-based in-loop filter can be
drastically accelerated. As a result, our approach with GPU
consumes the least time among all configurations in Table VI,
which is 2.4 and 23.5 times faster than the RHCNN [20]
with GPU and the heuristic loop filter [10] with only CPU,
respectively. From the above analysis, the proposed MIF is an
efficient approach in terms of time complexity, as a learning-
based in-loop filter.

C. Analysis With Various Settings

Transfer to LDP configuration. In this section, we first
evaluate the RD performance of our MIF approach at the
LDP configuration through transfer learning, to verify its
generalization ability. The models of MIF-Net and IF-Net at
all four QPs {22, 27, 32, 37} were initialized from those of the
RA configuration at the corresponding QPs. Then, they were

fine-tuned on our HIF database for the LDP configuration. The
file encoder_lowdelay_P_main.cfg [49] was applied during
both transfer learning and performance evaluation, while other
experimental settings followed those at the RA configuration,
as mentioned in Section VI-A. Table VII shows the RD
performance of all four approaches at the LDP configuration.
Note that the results are reported over all sequences at different
classes/resolutions, from both the JCT-VT standard test set and
our supplementary test set. We can observe from Table VII that
our MIF approach achieves −23.341% of BD-BR on average,
outperforming −16.567% of the DBF and SAO, −18.934%
of [10] and −19.518% of [20]. Similar results can also be
found in terms of BD-PSNR. In conclusion, the effectiveness
and generalization ability of our MIF approach have been
verified at the LDP configuration.

Statistics of frame quality. To better understand the per-
formance of our MIF approach, it is helpful to analyze the sta-
tistics of frame quality, for different in-loop filters. In addition
to PSNR, the structural similarity (SSIM) [53] is also added
to evaluate the visual quality of video sequences. As tested
in [53], SSIM has a remarkably better prediction of subjec-
tive visual quality than PSNR. Figure 12-(a) illustrates the
quality fluctuation for the first 100 frames of sequence Kris-
tenAndSara as an example, evaluated on our MIF approach,
standard HEVC and two state-of-the-art approaches [10], [20].
It can be observed that our MIF approach outperforms
other three approaches in terms of overall PSNR and SSIM.
Also, the quality fluctuation for our approach is less than
that for other approaches. For more comprehensive analy-
sis, we further compare the statistics of PSNR and SSIM
for video sequences encoded by four approaches, as shown
in Figure 12-(b). Here, the results are averaged over all
18 JCT-VC test sequences at the RA configuration with QPs
{22, 27, 32, 37}. Analyzed from Figure 12-(b), our approach
achieves the mean PSNR of 37.533 dB, considerably higher
than that for other three approaches. Moreover, the standard
deviation of PSNR for our approach is 0.776 dB, smaller than
0.791 dB of standard HEVC, 0.787 dB of [10] and 0.786 dB
of [20]. For the mean and standard deviation of SSIM, similar
results can be found. The above analysis verifies that our MIF
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TABLE VII

RD PERFORMANCE OF IN-LOOP FILTERS (LDP CONFIG.)

approach can achieve both better overall quality and lower
fluctuation of quality for compressed videos. This benefits
from the multi-frame design, in which low-quality frames can
be significantly enhanced using other higher-quality frames.

Comparison with learning-based in-loop filters on JVET.
Considering that learning-based in-loop filters proposed by
JVET have made remarkable achievements, it is also necessary
to evaluate their performance. To this end, we compare our
MIF approach with two sequence-independent filters for VVC,
i.e., the residual weight-sharing CNN [35] and the dense
residual CNN [36]. Note that the filters [35], [36] were re-
implemented in HM [43] for HEVC. For fair comparison,
the models of [35], [36] were both re-trained on our HIF
database. Table VIII shows the RD performance of three
approaches at the RA configuration with QPs {22, 27, 32, 37}.
We can find in this table that the average BD-BR of our
approach is −12.184%, outperforming −7.875% of [35] and
−9.004% of [36]. In terms of BD-PSNR, there exist similar
results. On a closer observation, our approach also performs
better than the other two approaches at each resolution of both
test sets in Table VIII, in terms of both BD-BR and BD-PSNR.
Therefore, the effectiveness and stability of our MIF approach
have been verified, compared with two newly-developed in-
loop filter approaches in JVET.

D. Ablation Study
We further conduct a series of ablation experiments to

investigate the effectiveness of major components in our
approach. Our ablation study starts from the standard in-loop
filter, and then certain components are added step-wise, finally
reaching the proposed MIF approach. Figure 13 shows the
RD performance at the RA configuration. More details are
discussed in the following.

Plain CNN vs. standard in-loop filter. In the standard DBF
and SAO, the filtering procedure is predetermined without
any trainable parameter, which tends to be limited in reduc-
ing compression artifacts with diverse content. By contrast,
we replace the standard DBF and SAO by a plain-CNN-based
filter, providing sufficient trainable parameters. For simplicity,
the plain CNN is composed of 4 successive convolutional
layers4 for generating the difference frame F�

n , without any

4The plain CNN contains 3 layers (each outputting 48 channels) and 1 layer
(outputting 1 channel) in sequence. All layers are convoluted by 3×3 kernels
with stride of 1, followed by the PReLU [45] activation.

TABLE VIII

RD PERFORMANCE OF THE PROPOSED
FILTER AND FILTERS FOR JVET (RA CONFIG.)

dense unit, block-adaptive convolutional layer and utilization
of multiple frames. We can observe from Figure 13 that the
plain CNN improves RD performance by 4.381% with BD-BR
saving and 0.147 dB of BD-PSNR increase, compared with the
standard DBF and SAO.

CNN with dense units vs. plain CNN. To analyze the
impact of network topology, we substitute the 4 convolu-
tional layers in the plain CNN by 4 successive dense units,
i.e., changing the plain CNN into the proposed IF-Net without
block-adaptive convolution. Note that the numbers of trainable
parameters are the same in both networks with and without
dense units, each containing 47, 196 convolutional weights. As
can be seen in Figure 13, the dense units outperform the plain
typology of CNN by 0.891% of BD-BR saving and 0.032 dB
of BD-PSNR increase, when implemented in the proposed in-
loop filter. As discussed in [28], some possible reasons for the
effectiveness of dense units include: (1) the feature reuse to
enhance parameter efficiency, (2) the flexible topology with
various depth of pathways for easy convergence and (3) the
implicit deep supervision that enforces intermediate layers to
learn discriminative features.

IF-Net with vs. without block-adaptive convolution.
In HEVC, the flexible CTU partition structure has evident
influence on compression artifacts, especially on blocking
artifacts. Therefore, a block-adaptive convolutional layer is
proposed to handle such artifacts. We evaluate two networks
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Fig. 12. Statistics of frame quality for different approaches. (a) PSNR
and SSIM fluctuation for the first 100 frames of sequence KristenAndSara.
(b) Statistics of PSNR and SSIM over all 18 JCV-VC sequences at the RA
configuration with QPs {22, 27, 32, 37}. “a ± b” represents mean value of a
with standard deviation of b.

Fig. 13. RD performance of ablation study. The results are obtained over all
18 sequences in the JCT-VT test set, compared at the RA configuration with
QPs {22, 27, 32, 37}.
with and without block-adaptive convolution to analyze its
effectiveness. In terms of RD performance, the IF-Net with
block-adaptive convolution is better than that without it, where
the decrease of BD-BR is 0.411% and the increase of PSNR

is 0.015 dB. The block-adaptive convolution outperforms
typical convolution, because the CTU structure has impact on
the compression artifacts in HEVC, especially the blocking
artifacts.

IF-Net and MIF-Net vs. only IF-Net. In our MIF approach,
the utilization of multiple frames is a major contribution for
enhancing the quality of each URF. Here, we investigate the
RD performance of our approach with and without MIF-Net.
Note that RFS is enabled when evaluating the performance
with MIF-Net. As can be seen in Figure 13, our approach with
both IF-Net and MIF-Net outperforms the setting with only
IF-Net (0.907% BD-BR reduction and 0.035 dB BD-PSNR
increase). These results verify the effectiveness of leveraging
multiple frames for our in-loop filter. The multi-frame design
is effective because there always exists considerable quality
fluctuation among adjacent frames, and a low-quality frame
can be enhanced by its neighboring higher-quality frames.

From the above analysis, three major configurations of
network contribute to the proposed MIF approach, comparing
with a plain CNN. Among them, the outperformance is mainly
due to the utilization of multiple frames and the efficient
dense units. Also, the novel block-adaptive convolution helps
to improve the RD performance in a certain extent. Therefore,
the reason why such network configurations are beneficial, lies
in both the advanced topology itself (i.e., the dense units) and
the specific characteristics of the compression artifacts (i.e.,
the multi-frame design and block-adaptive convolution).

VII. CONCLUSION

In this paper, we have proposed a deep-learning-based MIF
approach for HEVC. Different from the existing in-loop filter
approaches based on a single frame, our MIF approach learns
to enhance the visual quality of one frame by leveraging
multiple adjacent frames. To this end, we first constructed a
large-scale HIF database, and found that there normally exist
an adequate number of reference frames with both higher
quality and similar content for a URF. According to our
observation, we design an RFS for selecting these reference
frames. Taking advantage of the HIF database, a deep MIF-
Net model was proposed to enhance the quality of each URF,
which utilizes both the spatial information of this URF and
the temporal information of its selected reference frames.
The MIF-Net model was constructed by the newly developed
DenseNet with improved generalization ability and computa-
tional efficiency. Also, a novel block-adaptive convolutional
layer was proposed for MIF-Net, considering the blocking
artifacts highly influenced by the CTU structure in HEVC.
Finally, both objective and subjective experiments demon-
strated that our MIF approach significantly outperforms the
standard in-loop filter and other state-of-the-art approaches
for HEVC. For future works, more various details related
to compression artifacts (e.g., skip modes, prediction unit
partition, motion vectors and residual frames) may also be
utilized, with potential to further improve the performance of
in-loop filters. In addition, the implementation of deep neural
networks can be accelerated with some techniques [54]. Thus,
another future work is applying these techniques to speed up
our MIF approach.
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