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ABSTRACT
The High Efficiency Video Coding (HEVC) standard
significantly saves coding bit-rate over the proceeding H.264
standard, but at the expense of extremely high encoding
complexity. In fact, the coding tree unit (CTU) partition
consumes a large proportion of HEVC encoding complexity,
due to the brute-force search for rate-distortion optimization
(RDO). Therefore, we propose in this paper a complexity
reduction approach for intra-mode HEVC, which learns a
deep convolutional neural network (CNN) model to predict
CTU partition instead of RDO. Firstly, we establish a large-
scale database with diversiform patterns of CTU partition.
Secondly, we model the partition as a three-level classification
problem. Then, for solving the classification problem,
we develop a deep CNN structure with various sizes of
convolutional kernels and extensive trainable parameters,
which can be learnt from the established database. Finally,
experimental results show that our approach reduces intra-
mode encoding time by 62.25% and 69.06% with negligible
Bjøntegaard delta bit-rate of 2.12% and 1.38%, over the test
sequences and images respectively, superior to other state-of-
the-art approaches.

Index Terms— High efficiency video coding, intra-mode
coding, complexity reduction, convolutional neural network

1. INTRODUCTION

The latest High Efficiency Video Coding (HEVC)
standard [1] saves nearly 50% bit-rate over its predecessor
H.264/Advanced Video Coding (AVC) standard with similar
video quality, by adopting several sophisticated video coding
techniques like coding tree unit (CTU) partition. However,
these techniques lead to extremely high encoding complexity
of HEVC. As investigated by [2], the HEVC encoding
time is higher than H.264/AVC by 9% ∼ 502%, making
it intractable to be implemented on real-time applications.
Therefore, it is necessary to reduce the encoding complexity
of HEVC to an acceptable level with ignorable loss on
rate-distortion (RD) performance. In the past few years,
great improvement has been seen in the research of HEVC
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complexity reduction, with various effective approaches
emerging. While most of these approaches are concerned
with inter-mode [3–13], it is also necessary to reduce
intra-mode coding complexity of HEVC, which is 3.2 times
higher than that of H.264/AVC [14]. Since the CTU partition
contributes to the largest proportion of encoding complexity
in HEVC (at least 80% in the reference software HM [15]),
most of existing intra-mode HEVC complexity reduction
works aim to reduce the complexity by simplifying the
process of CTU partition [16–21].

Generally, the works for HEVC complexity reduction can
be classified into two categories: heuristic and learning-based
methods. In heuristic methods, some intermediate features
during encoding are properly explored to early determine
the CTU partition before checking all the possibilities of
partition. To be more specific, Cho et al. [16] developed a CU
splitting and pruning method with a Bayesian decision rule,
based on full and low-complexity RD costs. Kim et al. [17]
proposed a method to decide whether a CU is split, according
to the number of high-frequency key-points in each CU. In
addition to CU-based complexity reduction, some methods
were proposed to relieve the complexity of prediction unit
(PU) partition. For example, Khan et al. [18] proposed a
fast PU size decision method by adaptively combining smaller
PUs into larger PUs on the basis of video frame contents.

Despite effective, the heuristic methods possess the
disadvantage that the criteria to determine the CTU partition
have to be developed manually. It may lead to arbitrariness
to some extent and is intricate to find correlations among
multiple intermediate features, making it difficult to achieve
desirable RD performance. To solve such a problem,
learning-based methods, with the ability to learn from
extensive data and build an optimal model, have emerged
to reduce video coding complexity, especially for HEVC.
For example, for intra-mode HEVC coding, Hu et al. [19]
modelled the CU partition process as a binary classification
problem with logistic regression, and Liu et al. [20] made
the classification with the support vector machine (SVM).
As a result, the computational time on CTU partition can
be significantly reduced using well-trained classification
models instead of the brute-force search. For inter-
mode HEVC coding, Corrêa et al. [12] proposed three
early termination schemes with data mining techniques, to
simplify the decision of optimal CTU structures. Zhang et
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al. [13] proposed a CU depth decision method with a joint
classifier of SVM to make a trade-off between encoding
complexity and RD performance. In all those methods,
some handcrafted features, such as RD cost, quantization
parameter (QP) and the texture complexity, have to be
manually extracted to predict the patterns of CTU partition.
Those handcrafted features rely heavily on prior knowledge
about their relationships with CTU partition results, which
remain elusive. Actually, exploration on handcrafted features
for CTU partition may benefit from the latest convolutional
neural networks (CNN), which can automatically learn
features for making decisions on CTU structure. The most
recent work [21] has developed a CNN approach to predict
CTU structure. However, the architecture of CNN in [21] is
shallow, as it only contains two convolutional layers with 6
and 16 3 × 3 kernels. This shallow architecture can avoid
over-fitting when the training data is not sufficient, but it can
hardly learn enough features to accurately predict the CTU
partition.

In this paper, we propose a deep CNN approach to
reduce the complexity of HEVC intra-coding, by learning
to split CTU instead of the conventional brute-force search
on CTU partition. To this end, we first establish a large-
scale database for CTU partition of intra-mode HEVC, which
contains 2,000 HEVC encoded images with CTU partition
available at 4 different QPs. With enough training data from
our database, the architecture of CNN is able to “go deeper”,
so that extensive parameters can be learnt for handling diverse
patterns of CTU partition. Accordingly, we develop a new
CNN architecture adaptive to CTU characteristics of HEVC,
in which various sizes of convolutional kernels are chosen
according to the sizes of all possible CUs. In addition, the
stride of kernels in our deep CNN satisfies the CTU splitting,
in which non-overlapping is enabled for convolution. More
importantly, different from the shallow CNN architecture of
[21], a great number of parameters (both on convolutional
kernels and fully connected layers) are embedded in our
CNN architecture. As a result, our approach is capable
of generalizing various kinds of partition patterns in HEVC
intra-mode coding, such that the CTU partition can be
accurately predicted. It is worth mentioning that the shallow
structure of [21] cannot handle the prediction of splitting
from 64 × 64 to 32 × 32, and thus our approach can reduce
more encoding complexity than [21]. By avoiding brute-force
search for optimal partition of CTU, our approach is effective
and efficient in significantly reducing complexity of HEVC
intra-mode coding, which takes advantage of the accurate
prediction of CTU partition.

2. CTU PARTITION DATABASE

2.1. Overview of CTU Partition

The CTU partition structure [1] is one of the major
contributions in HEVC standard. The size of CTU is
64×64 pixels by default, also the maximum allowed size in

standard HEVC. A CTU can either contain a single CU or be
recursively split into multiple smaller CUs, based on a quad-
tree structure. The minimum size of CU is usually configured
before encoding, with the default size of 8×8. Thus, the sizes
of CUs in CTU are diverse, ranging from 64×64 to 8×8.

The numbers and sizes of CUs in each CTU are
determined by a brute-force rate-distortion optimization
(RDO) search, which includes a top-down checking process
and a bottom-up comparing process. Figure 1 illustrates
the RD cost checking and comparing between a parent CU
and its sub-CUs, respectively. In the checking process, the
encoder checks the RD cost of the whole CTU, followed by
checking its sub-CUs, until reaching the minimum CU size.
In Figure 1, the RD cost of a parent CU is denoted as Rp,
and the RD costs of its sub-CUs are denoted as Rs,m, where
m ∈ {1, 2, 3, 4} is the index of each sub-CU. Note that when
the parent CU is non-split, the RD cost of split flag is included
in Rp. However, when split, the cost of encoding split flag as
“true” needs to be considered additionally, denoted as Rsft.
Afterwards, the comparing process based on the RD cost is
conducted to determine whether or not a parent CU should be
split. As shown in Figure 1 (b), if Rsft +

∑4
m=1 Rs,m < Rp,

the parent CU needs to be split, and otherwise non-split. After
the whole RDO search, the CTU partition with the minimum
RD cost is selected.

It is worth pointing out that the RDO search is
extremely time-consuming, mainly attributed to the brute-
force recursive checking process. In a 64×64 CTU, 85
possible CUs are checked, i.e., 1, 4, 42 and 43 CUs with size
of 64×64, 32×32, 16×16 and 8×8 respectively. In order to
check the RD cost of each CU, the encoder needs to execute
pre-coding for the CU, in which the possible prediction and
transformation modes have to be encoded. More importantly,
the pre-coding has to be conducted for all 85 possible CUs
in standard HEVC intra-coding, thus consuming the largest
proportion of encoding time. However, in the final CTU
partition, only part of CUs are selected, from 1 (if the 64×64
CU is not split) to 64 (if the whole CTU is split into 8×8
CUs). Therefore, the pre-coding of at most 84 CUs can be
avoided by CTU partition prediction (i.e., 85-1), when the
whole CTU is not split. The pre-coding of at least 21 CUs
can be saved by CTU partition prediction (i.e., 85-64), once
the sizes of all CUs in the CTU are 8× 8.

2.2. Database Establishment

Now, we establish a large-scale database for CTU Partition
of Intra-mode HEVC, namely CPIH database. To our best
knowledge, our database1 is the first one on CTU partition
patterns. First, 2000 images at resolution 4928×3264 are
selected from Raw Images Dataset (RAISE) [22]. These
2000 images are randomly divided into training (1700
images), validation (100 images) and test (200 images) sets.
Furthermore, each set is equally divided into four subsets:
one subset is with original resolution and the other three

1Our database is available at https://github.com/HEVC-Projects/CPIH
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Fig. 1: Illustration of checking and comparing RD cost between a parent
CU and its sub-CUs. Note that this illustration can be applied to the splitting
of 64× 64→ 32× 32, 32× 32→ 16× 16 or 16× 16→ 8× 8.

Table 1: Splitting and non-splitting samples in CPIH database

CU Size QP
Number of Samples

Splitting Non-splitting Total

64×64

22 2,439,479 439,021 2,878,500
27 2,160,455 718,045 2,878,500
32 1,982,486 896,014 2,878,500
37 1,870,295 1,008,205 2,878,500

32×32

22 5,334,843 4,423,073 9,757,916
27 4,043,975 4,597,845 8,641,820
32 3,636,461 4,293,483 7,929,944
37 3,254,952 4,226,228 7,481,180

16×16

22 10,908,631 10,430,741 21,339,372
27 7,719,222 8,456,678 16,175,900
32 6,236,637 8,309,207 14,545,844
37 4,709,216 8,310,592 13,019,808

Total 54,296,652 56,109,132 110,405,784

subsets are down-sampled to be 2880×1920, 1536×1024
and 768×512. As such, our CPIH database contains images
at different resolutions. This ensures sufficient and diverse
training data for learning to predict CTU partition. Next, all
images are encoded by the HEVC reference software HM
[15]. Specifically, four QPs {22, 27, 32, 37} are applied for
encoding with the configuration file encoder intra main.cfg
in the common test conditions [23]. After encoding, the
binary labels indicating splitting (=1) and non-splitting (=0)
are obtained for all CUs, and each CU with its corresponding
binary label can be seen as a sample in our database. Finally,
the CPIH database is obtained, which contains 12 sub-
databases according to QP and CU size, on account that 4 QPs
are applied and CUs with 3 different sizes (64×64, 32×32
and 16×16) are allowed to be split.

Table 1 shows the numbers of splitting and non-splitting
CUs from 12 sub-databases in our CPIH database. In total,
110,405,784 samples are gathered, ensuring the sufficiency
of training data, and the percentages of splitting and non-
splitting CUs are 49.2% and 50.8%, respectively.

3. PROPOSED METHOD

3.1. Three-level CU Classifier

According to CTU partition structure in HEVC, a maximum
of four different CU sizes are supported, i.e., 64×64, 32×32,
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Fig. 2: Illustration of three-level CU classifier

16×16 and 8×8, corresponding to CU depth 0, 1, 2 and 3.
Note that a CU with size≥ 16×16 can be either split or non-
split. As illustrated in Figure 2, the overall CTU partition can
be regarded as a combination of binary classifiers {Sl}3l=1 at
three levels, where l ∈ {1, 2, 3} represents three levels of
decisions on whether to split a parent CU into smaller CUs.
In particular, l = 1 indicates the level of decision for a 64×64
CU into 32 × 32 CUs. Similarly, l = 2 means the level of
decision for 32×32 into 16×16, and l = 3 stands for 16×16
into 8 × 8. Given a CTU, we assume that luminance CUs
with depth 0, 1, 2 and 3 are denoted as U , U i, U i,j and
U i,j,k, and the subscripts i, j, k ∈ {1, 2, 3, 4} are the indices
of the sub-CUs split from U , U i and U i,j respectively. For
a CU with size ≥ 16 × 16, the binary classifier Sl yields
the output yl indicating whether this CU is split (yl = 1)
or not (yl = 0), represented by downward arrows with two
branches in Figure 2. Considering all binary classifiers, the
overall partition of the CTU is extremely complex, because of
the quad-tree based CTU structure and the recursive splitting
processes. Specifically, for a 16× 16 CU, only 2 patterns are
possible: splitting and non-splitting. For a 32 × 32 CU, 24

splitting patterns are possible, as we have to decide whether
or not to split for its four 16 × 16 CUs. With the addition of
non-splitting pattern on this 32× 32 CU, the total number of
partition patterns is 24 + 1 = 17. Furthermore, for a 64× 64
CU, there exist 174 splitting patterns for four 32 × 32 CUs,
such that the total number of the CTU partition patterns is
174 + 1 = 83522.

In HEVC, the classifiers {Sl}3l=1 are obtained with time-
consuming RDO process as mentioned in Section 2.1. In
fact, they can be predicted at a much faster speed by
machine learning. However, due to the multitudinous patterns
of the CTU partition problem (83522 classes in total),
it is intractable to be directly predicted by a multi-class
classification. Instead, a separate binary classifier is adopted
at each decision level l ∈ {1, 2, 3} to predict the binary
classification yl given input U , U i or U i,j . Mathematically,
there exists a prediction function for our three-level CU
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classifier:

ŷl =

 Sl(U), l = 1
Sl(U i), l = 2, i ∈ {1, 2, 3, 4}
Sl(U i,j), l = 3, i, j ∈ {1, 2, 3, 4}

(1)

where ŷl denotes the predicted yl. In the following, we
focus on developing a deep CNN approach for learning the
three-level CU classifier of (1). It is worth mentioning that
the proposed classifier can reduce the encoding complexity
remarkably through omitting the redundant RD cost checking
in the original HEVC standard.

3.2. Proposed Deep CNN Structure

We propose a deep CNN structure adaptive to CTU partition
in HEVC, for learning the three-level CU classifier of (1). The
structure is composed of an input layer, three convolutional
layers, a concatenation layer and three fully-connected layers.
By sharing a uniform deep CNN structure, three separate
CNN models are learnt for obtaining the classifiers {Sl}3l=1
at three levels. The only difference among the three separate
CNN models is kernel sizes of the first convolutional layer,
pertinent to different sizes of CUs U , U i and U i,j . We
show in Figure 3 more details about the uniform deep CNN
structure. In this figure, wl is the width of input CU, i.e., 64
for U , 32 for U i and 16 for U i,j . To be more specific, all
layers in our CNN structure are described as follows.

• Input layer. The input layer is luminance CUs of U ,
U i or U i,j , corresponding to the classifiers S1(U),
S2(U i) and S3(U i,j). Therefore, the input to one CNN
model is the wl×wl matrices, where wl ∈ {64, 32, 16}
equals the width of U , U i or U i,j for classifier Sl.
Note that all elements of input matrices are normalized
to be in [0, 1].

• Convolutional layers. For the 1-st convolutional layer,
three branches of filters C1−1, C1−2 and C1−3 with
kernel sizes of wl

8 ×
wl

8 , wl

4 ×
wl

4 and wl

2 ×
wl

2 are
applied in parallel to extract low-level features of CU
splitting. We set the strides the same as the sizes of

Table 2: Configuration of proposed deep CNN

Layer Filter Size Number of
Filters

Number of
Trainable Parameters

C1−1
wl
8 × wl

8 64 w2
l

C1−2
wl
4 × wl

4 128 8w2
l

C1−3
wl
2 × wl

2 256 64w2
l

C2−1 2×2 128 32,768
C2−2 2×2 256 131,072
C3−1 2×2 256 131,072
F1 1×1 256 786,432
F2 1×1 16 4,096
F3 1×1 1 16

Total
Number of
Parameters

73w2
l + 1,085,456 =

 1,384,464 wl = 64
1,160,208 wl = 32
1,104,144 wl = 16

those filters for non-overlap convolutions. The above
design of the 1-st convolutional layer is in accordance
with all possible non-overlap CUs at different sizes for
CTU partition. Following the 1-st convolutional layer,
feature maps are half-scaled by convoluting with non-
overlapping 2× 2 kernels, until the size of final feature
maps reaching 2× 2.

• Other layers. All feature maps, yielded from the
last convolutional layer, are concatenated together and
then converted into a vector, through the concatenation
layer. Next, all features in the concatenated vector
flow through three fully-connected layers, including
two hidden layers and one output layer. Between the
2-nd fully-connected and output layers, features are
randomly dropped out [24] with probability of 50%
during CNN training. It is worth mentioning that all
convolutional layers and hidden fully-connected layers
are activated with rectified linear units (ReLU). The
output layer is activated with sigmoid function, since
the target output ŷl for splitting or non-splitting is
binary.

The specific configuration of CNN structure of Figure 3
is presented in Table 2. We can see from this table
that there are in total 1, 384, 464 / 1, 160, 208 / 1, 104, 144



trainable parameters for the CNN models, corresponding
to classification of S1(U), S2(U i) and S3(U i,j). Thus,
our CNN structure provides high capacity of learning, in
comparison to only 1,224 trainable parameters in [21] that
may cause under-fitting issue. Such huge numbers of
trainable parameters also benefit from extensive training
samples from our CPIH database (see Table 1 for the number
of training samples). For each sample, luminance CU ,i.e.,
U , U i or U i,j , is fed into the input layer of its corresponding
CNN, and its ground-truth classification label yl is seen as the
target output.

In our method, CNNs are trained using batches, the size of
which is R. The sets of ground-truth classification labels and
predicted outputs are denoted as {y(r)l }Rr=1 and {ŷ(r)l }Rr=1,
respectively, where y

(r)
l represents the ground-truth of the r-

th training sample and ŷ
(r)
l is its corresponding prediction.

Considering that Sl is a binary classifier, its loss function Ll

is based on the following cross-entropy:

Ll = − 1

R

R∑
r=1

[y
(r)
l log ŷ

(r)
l + (1− y

(r)
l ) log (1− ŷ

(r)
l )].

(2)
During training, Ll is minimized with an optimizer
implementing the stochastic gradient descent algorithm with
momentum.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our approach,
by comparing it with two state-of-the-art approaches, the
SVM based approach [13] and the latest CNN approach
[21]. All the three approaches were implemented on the
HEVC reference software HM [15]. In HM, the all-
intra (AI) mode was applied by using the configuration
file encoder intra main.cfg [23], since our approach mainly
focuses on complexity reduction of intra-coding of HEVC.
Here, four QP values ∈ {22, 27, 32, 37} were chosen for
compressing images or videos, with other parameters being
set by default. In our experiments, we test on all 200
images of the training set of our CPIH database, as well
as all 18 video sequences of the Joint Collaborative Team
on Video Coding (JCT-VC) standard test set [14]. The
Bjøntegaard delta bit-rate (BD-BR), Bjøntegaard delta PSNR
(BD-PSNR) [25] and ∆T are used for evaluating performance
of complexity reduction, where ∆T denotes the encoding
time-saving rate of complexity reduction approaches over the
original HM.

For our approach, 12 deep CNN models were trained for
3 classifiers {Sl}3l=1 at 4 QP values (= 22, 27, 32, 37). When
training the models, hyperparameters were tuned on CPIH
validation set. As a result, the size of batch for training is
64, and the momentum of optimizer is set to 0.9. In addition,
the initial learning rate is 10−5 for classifier S1, 10−4 for S2

and S3, and it decreases by 1% exponentially at every 1,000
epochs. In total, 500,000 epoches were iterated for training

Table 3: Results of BD-BR (%), BD-PSNR (dB) and ∆T (%) for video
sequences

Class Sequence Appr. BD-
BR

BD-
PSNR

∆T
QP=22 QP=27 QP=32 QP=37

A

PeopleOnStreet
[13] 16.02 -0.86 -63.39 -58.99 -57.01 -56.96
[21] 4.08 -0.23 -50.79 -53.87 -56.58 -61.15
Our 2.16 -0.12 -60.83 -61.10 -63.58 -66.39

Traffic
[13] 11.26 -0.58 -60.84 -60.25 -58.94 -60.16
[21] 5.17 -0.28 -53.86 -59.08 -63.54 -66.88
Our 2.76 -0.15 -65.39 -69.98 -70.56 -74.21

B

BasketballDrive
[13] 11.62 -0.27 -59.79 -60.03 -60.90 -62.50
[21] 6.34 -0.15 -68.50 -68.55 -70.30 -70.70
Our 4.60 -0.11 -66.70 -75.03 -79.25 -82.15

BQTerrace
[13] 13.05 -0.77 -58.26 -58.38 -57.33 -57.94
[21] 5.01 -0.31 -53.35 -56.81 -60.26 -61.13
Our 1.47 -0.10 -55.20 -59.35 -61.21 -64.38

Cactus
[13] 13.89 -0.50 -60.59 -58.89 -58.06 -58.60
[21] 6.38 -0.24 -58.18 -61.01 -64.94 -67.78
Our 2.11 -0.08 -60.53 -64.42 -68.18 -72.35

Kimono
[13] 2.42 -0.09 -65.34 -62.93 -62.43 -64.03
[21] 2.38 -0.08 -70.66 -72.75 -73.62 -73.86
Our 2.15 -0.08 -82.21 -83.53 -84.11 -84.70

ParkScene
[13] 6.53 -0.27 -61.48 -60.90 -60.59 -62.12
[21] 3.81 -0.16 -60.27 -65.10 -68.57 -70.16
Our 2.13 -0.09 -66.12 -69.48 -71.58 -75.96

C

BasketballDrill
[13] 22.48 -0.98 -58.21 -57.25 -53.76 -53.20
[21] 12.69 -0.58 -60.29 -62.35 -64.48 -67.20
Our 2.97 -0.14 -49.69 -53.80 -61.03 -67.99

BQMall
[13] 22.01 -1.27 -57.25 -54.39 -55.40 -56.71
[21] 8.52 -0.53 -47.08 -51.15 -53.26 -57.05
Our 1.27 -0.08 -49.29 -55.44 -52.96 -61.07

PartyScene
[13] 14.97 -1.10 -58.77 -56.49 -48.97 -54.01
[21] 9.87 -0.76 -52.72 -57.51 -59.77 -64.98
Our 0.50 -0.04 -37.33 -37.94 -41.45 -43.94

RaceHorses
[13] 12.89 -0.80 -59.20 -57.16 -54.96 -56.75
[21] 4.65 -0.30 -50.52 -59.30 -59.81 -63.15
Our 1.75 -0.11 -52.67 -54.70 -58.10 -64.52

D

BasketballPass
[13] 18.35 -0.98 -56.02 -54.06 -46.17 -53.81
[21] 8.80 -0.50 -60.24 -62.89 -64.31 -66.67
Our 2.20 -0.13 -51.26 -55.38 -58.05 -65.30

BlowingBubbles
[13] 13.99 -0.80 -57.26 -54.88 -48.72 -56.45
[21] 8.76 -0.52 -54.62 -60.45 -62.55 -65.48
Our 0.68 -0.04 -41.68 -44.23 -48.11 -54.43

BQSquare
[13] 21.55 -1.71 -53.73 -52.82 -47.41 -49.93
[21] 2.72 -0.24 -42.55 -46.05 -48.37 -49.89
Our 0.19 -0.02 -46.60 -46.94 -47.49 -46.91

RaceHorses
[13] 17.08 -1.12 -57.23 -54.30 -50.45 -53.73
[21] 5.19 -0.36 -52.86 -57.32 -58.80 -60.20
Our 1.23 -0.08 -45.38 -49.76 -52.60 -55.99

E

FourPeople
[13] 17.57 -0.96 -59.49 -57.58 -58.01 -58.67
[21] 8.44 -0.49 -54.79 -59.79 -64.39 -67.17
Our 3.12 -0.18 -61.83 -66.59 -69.11 -72.43

Johnny
[13] 23.09 -0.88 -59.84 -63.53 -62.41 -63.62
[21] 8.09 -0.32 -62.92 -65.51 -67.71 -70.05
Our 3.60 -0.15 -72.56 -75.74 -77.51 -79.46

KristenAndSara
[13] 24.36 -1.16 -61.35 -60.74 -59.16 -62.43
[21] 5.57 -0.28 -61.24 -64.61 -65.82 -67.21
Our 3.21 -0.16 -70.47 -73.01 -75.14 -77.42

Average
[13] 15.73 -0.84 -59.34 -57.98 -55.59 -57.87
[21] 6.47 -0.35 -56.41 -60.23 -62.62 -65.04
Our 2.12 -0.10 -57.54 -60.91 -63.33 -67.20

each model.
Evaluation on complexity reduction. First of all, we

compare the complexity reduction of the three approaches.
Tables 3 and 4 tabulate the encoding complexity reduction
results, in terms of complexity reduction rate over the original
HM. We can see from this table that our deep CNN approach
saves more time for most sequences at four QPs. In
average, our approach (−60.91%,−63.33% and −67.20%)
outperforms other two approaches (−57.98%,−55.59% and
−57.87% for [13]; −60.23%,−62.62% and −65.04% for
[21]) in complexity reduction at QP = 27, 32 and 37. Note
that our deep CNN approach consumes less time than the
shallow CNN approach [21], since [21] requires RDO search
for decision on splitting from 64 × 64 to 32 × 32. We can
further find that the gap of time saving between our and other
two approaches becomes larger when QP increases. This is
because only one or two deep CNN models are applied in our
three-level classifier (corresponding to classifier S1 or S2) for
more CTUs at decreasing bit-rate, which leads to more large
CUs. In addition, we can see from Table 4 that our approach
is able to averagely reduce more time on encoding all images
of the test set from our CPIH database, compared to [13]
and [21]. However, for low resolution images encoded at a
high bit-rate, our approach may have a higher computational



Table 4: Results of BD-BR (%), BD-PSNR (dB) and ∆T (%) for images
from our CPIH test set)

Image
Source Resolution Appr. BD-

BR
BD-

PSNR
∆T

QP=22 QP=27 QP=32 QP=37

CPIH
Test Set

768×512
[13] 9.04 -0.63 -60.47 -60.56 -58.38 -61.30
[21] 3.02 -0.22 -54.97 -58.78 -61.78 -64.41
Our 1.05 -0.08 -54.74 -57.84 -59.58 -65.19

1536×1024
[13] 10.50 -0.68 -60.95 -61.19 -61.13 -62.81
[21] 3.28 -0.22 -55.84 -59.46 -62.43 -64.17
Our 1.28 -0.09 -59.08 -62.25 -63.47 -67.68

2880×1920
[13] 4.85 -0.26 -65.86 -65.64 -64.93 -66.70
[21] 2.23 -0.12 -59.95 -63.14 -68.07 -69.46
Our 1.67 -0.09 -69.63 -73.34 -75.92 -78.48

4928×3264
[13] 4.47 -0.21 -66.81 -66.68 -66.26 -66.09
[21] 1.95 -0.09 -61.43 -65.27 -68.70 -71.00
Our 1.51 -0.07 -76.01 -79.56 -81.19 -81.05

Average
[13] 7.22 -0.44 -63.52 -63.52 -62.67 -64.22
[21] 2.62 -0.16 -58.05 -61.66 -65.25 -67.26
Our 1.38 -0.08 -64.86 -68.25 -70.04 -73.10

complexity than [13], as shown in Table 3. The reason is
that CTU prefers to have small CUs, when resolution is low
and bit-rate is high. In a word, our approach is capable of
improving the time efficiency of HEVC intra-mode coding.

Evaluation on RD performance. Next, we compare the
RD performance of our and other two approaches, in terms
of BD-BR and BD-PSNR. Tables 3 and 4 report BD-BR
increment and BD-PSNR reduction of three approaches, with
the original HM as anchor. We can see from these tables that
the BD-BR increment of our deep CNN approach is averagely
2.12% for videos and 1.38% for images, which significantly
outperforms [13] (6.47% for videos and 2.62% for images)
and [21] (15.73% for videos and 7.22% for images). In
addition, our approach incurs 0.1 dB and 0.08 dB PSNR
degradation for videos and images, respectively, far better
than those of [13] and [21]. Thus, our approach performs
best among the three approaches. The improvement of RD
performance by our approach mainly attributes to the high
prediction accuracy of CTU partition, benefiting from the
deep CNN structure with sufficient parameters learnt from our
large-scale CPIH database.

5. CONCLUSIONS

In this paper, we propose a deep CNN approach to reduce
the encoding complexity on intra-mode HEVC, by learning
to predict the optimal CTU partition instead of conventional
brute-force RDO search. The CNN utilizes image textures of
CUs and is adaptive to CTU partition. In addition, a large-
scale CPIH database is established, with diversiform CTU
partition patterns sufficient for CNN training. Compared with
the original HM, our approach reduces encoding time by
62.25% and 69.06% with negligible 2.12% and 1.38% BD-
BR, on the JCT-VC standard test sequences and our CPIH
test images, respectively.
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