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ABSTRACT
The latest High Efficiency Video Coding (HEVC) standard
significantly improves coding efficiency over H.264/AVC, at
the cost of heavy encoding and decoding complexity. For re-
ducing HEVC decoding complexity to a target, we propose in
this paper a Subjective-Quality-Optimized Complexity Con-
trol (SQOCC) approach, which optimizes subjective quality
loss caused by the decoding complexity reduction. First, a
saliency detection method in HEVC domain is developed as
the preliminary of subjective quality metric. Based on detect-
ed saliency, we establish a formulation to minimize subjec-
tive quality loss at the constraint of specific decoding com-
plexity reduction, via disabling the deblocking filters of some
Largest Coding Units (LCUs). Next, we utilize least square
fitting to model functions in our formulation. We then provide
a solution to our formulation, achieving subjective-quality-
optimized complexity control for HEVC decoding. Finally,
the experimental results show the effectiveness of our SQOC-
C approach in terms of both control accuracy and subjective
quality.

Index Terms— HEVC, complexity control, saliency, sub-
jective quality, deblocking filter.

1. INTRODUCTION
The past decade has witnessed an explosive growth of video
data delivered over Internet. Such a growth poses a great
challenge on the efficiency of video coding. To significantly
improve the efficiency of video coding, the High Efficiency
Video Coding (HEVC) standard [1] was approved in April,
2013. It has been verified that HEVC can reduce the bit-rate
to around 50% with similar visual quality, compared with its
former standard H.264/AVC. However, the cost for the high
coding efficiency is much more computational complexity
[2]. This cost becomes a great obstacle of video encoding
and decoding on portable devices with limited power.

There are extensive approaches on accelerating the decod-
ing speed with hardware techniques, such as [3, 4, 5, 6, 7].
For example, Yan et al. [5] and Chi et al. [6] proposed to
take advantages of Single Instruction Multiple Data (SIMD)
instructions for increasing decoding speed. Souza et al. [7]
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Fig. 1. An example for application of our SQOCC approach. When the devices is
with sufficient power (eg. 80%), the video can be decoded with full fidelity. Once the
battery is insufficient (eg. 77%, 73% and 68%), the video is decoded with low complex-
ity (complexity is reduced in the dark areas), according to the left battery. However, it
incurs the quality degradation. The subjective quality should be maximized in quality
degradation for the proper Quality of Experience (QoE).

achieved the decoding acceleration by proposing a novel G-
PU parallel algorithm. The aforementioned approaches can
only accelerate decoding, but cannot reduce the complexity
and power consumption. In addition, [8] firstly predicts the
decoding computational complexity of each frame, and then
changes the frequency of CPU to the minimum frequency on
the promise of real-time decoding. However, all above ap-
proaches can only be applied in specific hardware at the de-
coder side. They are hardly adaptive to all general hardware.

To overcome the drawback of hardware-based approach-
es, some algorithmic approaches have been proposed to de-
crease video decoding complexity. There exist a great num-
ber of works, such as [9, 10, 11, 12, 13]. For H.264/AVC,
Liu et al. [9] proposed to detect Region-Of-Interest (ROI),
and to allocate less computational resources to non-ROIs. As
such, the total encoding and decoding complexity can be re-
duced by an ROI based Rate-Distortion-Complexity (R-D-C)
cost function. Later, Naccari et al. [10] proposed an approach
for reducing decoding complexity of H.264/AVC and HEVC.
The approach optimized by the Generalized Block-edge Im-
pairment Metric (GBIM) estimates the offsets in the deblock-
ing filters, with lower complexity than the conventional brute
force optimization. For HEVC, [11] reduces the decoding
complexity by modifying the structure of prediction during
encoding. Later, [12] and [13] proposed to remove the HEVC
in-loop filters and to shorten the sizes of the FIR filters in mo-
tion compensation, for reducing HEVC decoding complex-
ity. Nevertheless, the above approaches cannot control the
decoding complexity to a given target, leading to insufficient
or wasteful use of power resources.

There are few works on controlling the decoding com-
plexity. To be more specific, Langroodi et al. [14] developed



an approach that the decoder sends its computational resource
demand to the encoder side, and the encoder optimizes the
motion compensation to achieve decoding complexity con-
trol at the decoder side. However, the configuration of en-
coder has to be changed according to the feedback. Thus,
their approach dose not work in the case that videos have been
already encoded. Besides, it does not aim at optimizing per-
ceptual quality, which is a key for Visual Quality Assessment
(VQA).

In this paper, we propose a Subjective-Quality-Optimized
Complexity Control (SQOCC) approach to control the HEVC
decoding complexity with minimal subjective quality loss.
Fig. 1 shows a possible application of our approach. The ba-
sic idea of our approach is to disable the deblocking filters of
some non-salient Largest Coding Units (LCUs), according to
the target decoding complexity. The computational complex-
ity can be reduced when disabling the deblocking filters of
some LCUs. The cost is the degraded visual quality. Accord-
ingly, there are two objectives of our SQOCC approach: 1)
Reducing the decoding complexity to the target, via disabling
the deblocking filters of some LCUs; 2) Optimizing the sub-
jective quality loss, via considering the detected saliency of
each LCU in disabling deblocking filters. The main contribu-
tions of our approach are:

• We propose an optimization formulation to minimize
subjective quality loss at a given target complexity of
HEVC decoding.

• We model the relationship among saliency, subjective
quality loss and complexity reduction, when disabling
debocking filters of some LCUs in HEVC decoding.

• We develop a solution to the proposed formulation,
achieving complexity control of HEVC decoding with
minimal subjective quality distortion.

2. SALIENCY DETECTION
2.1. The proposed method
When reducing decoding complexity of HEVC, the visual
quality may be degraded as the expense. In fact, subjective
quality can be favored in visual quality degradation, as the
Human Visual System (HVS) [15] normally pays attention to
small salient regions. Saliency detection [16] aims at predict-
ing visual attention of humans, and it can be used for favoring
subjective quality during decoding complexity control. Most
existing saliency detection methods [16] work in pixel do-
main. As such, they cannot be used in decoding complexity
control, since pixels are not available before decoding videos
but required for saliency detection. Most recently, Opera-
tional Block Description Length (OBDL) has been exploited
in [17], which is based on the bit number of each coding block
assigned in the H.264 encoder. Then, the OBDL is embedded
into Markov Random Fields (MRF) for video saliency detec-
tion. However, the energy optimization of MRF makes OBDL
too time-consuming to be implemented in decoding complex-
ity control. Besides, OBDL can only be used in H.264 bit-

streams, rather than HEVC. Thus, we develop a new saliency
detection method in HEVC domain as the preliminary for our
SQOCC approach.

In [16], it has been argued that the region with high-
information can attract more visual attention. The HEVC
encoder also prefers to assign more bits to high-information
regions. Therefore, the number of allocated bits of each L-
CU, denoted by bn for the n-th LCU, is seen as a feature in
our saliency detection method. Moreover, [16] has also stat-
ed that contrast can be used for saliency detection, since the
region standing out from its neighbors may attract extensive
attention. So, the contrast of bit allocation is considered as
another saliency detection feature in our method. Specifical-
ly, Δbn, the contrast of bit allocation of the n-th LCU, can be
calculated as

Δbn =
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where I is the set of 8-neighboring LCUs and dn′ is the Eu-
clidean distance between the n′-th and n-th LCUs. In addi-
tion, σb is a parameter to control the spatial contrast of bit
allocation. In our saliency detection method, we set σb = 1.2
to make the results appropriate. Then, both bn and Δbn are
normalized and linearly combined as follows,

wn =
1

2
(
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), (2)

where bmax and Δbmax are the maximal bn and Δbn in the
video frame. Finally, the saliency map of each video frame
can be obtained1 for our SQOCC approach.

2.2. Effectiveness validation
Now, we evaluate the performance of our saliency detection
method in HEVC domain. The performance is evaluated over
all 15 video sequences of classes B, C and E/E′ from JCT-
VC database [18]. For performance evaluation, the salien-
cy detection accuracy is measured in terms of the Area Un-
der ROC Curve (AUC), Normalized Scanpath Saliency (NSS)
and linear Correlation Coefficient (CC). Here, the accuracy
of our method is averaged over all sequences, and then it is
compared with that of some state-of-the-art saliency detection
methods, i.e., PQFT [19], Rudoy et al. [20], OBDL [17] and
Itti’s model [21]. The results are tabulated in Table 1. Note
that the method with a larger AUC, NSS, or CC value can
better predict the human fixations. We can see from this table
that our saliency detection method is comparable to or even
better than other methods. This validates the effectiveness of
our method in saliency detection.

3. COMPLEXITY CONTROL APPROACH

3.1. Formulation for SQOCC approach
Our SQOCC approach aims at reducing decoding complexity
to the target, meanwhile favoring subjective quality. Here,

1Saliency detection consumes averagely 0.2ms (1.2 × 10−3mWh) per
frame.



Table 1. Comparison of saliency detection accuracy
Our PQFT Rudoy OBDL Itti

AUC 0.80 0.72 0.77 0.79 0.70
NSS 1.27 0.88 1.32 1.26 0.49
CC 0.36 0.23 0.37 0.32 0.12

ΔSn and ΔCn are defined as the subjective quality loss and
complexity reduction of the n-th LCU in a frame, and ΔCT

is the target of complexity reduction. The optimization of
SQOCC can be expressed by the following formulation:

min
N∑

n=1

ΔSn s.t.
N∑

n=1

ΔCn ≥ ΔCT , (3)

where N is the total number of LCUs in a frame.
In fact, [2] has verified that deblocking filters consume

13%-17% of decoding complexity. Hence, the decoding com-
plexity can be reduced by disabling the deblocking filters of
some LCUs, at the expense of visual quality loss. On the
other hand, the subjective quality loss should be minimized
according to the HVS. fn ∈ {0, 1} indicates whether the de-
blocking filter of the n-th LCU is disabled (fn = 0) or en-
abled (fn = 1). Through experimental analysis, we found
that when the deblocking filter is disabled, ΔSn and ΔCn

in (3) have strong correlation with saliency value of the n-th
LCU. Thus, formulation (3) can be turned to

min
{fn}N

n=1

N∑
n=1

ΔS(fn, wn) s.t.
N∑

n=1

ΔC(fn, wn) ≥ ΔCT , (4)

where ΔS(fn, wn) indicates a function of subjective quali-
ty loss regarding fn and wn, and ΔC(fn, wn) is a function
of complexity reduction with respect to fn and wn. Next,
we focus on modelling ΔS(fn, wn) and ΔC(fn, wn) for our
SQOCC approach.

3.2. Relationship Modelling forΔS(fn, wn)

According to [22], subjective visual distortion can be mea-
sured by weighted Mean Square Error (MSE). Assume that
wn and MSEn are the saliency weight and MSE of the n-th
LCU, respectively. Then, subjective quality loss ΔS(fn, wn)
can be calculated by

ΔS(fn, wn) =
wnMSEn∑N

n=1
wn

(1− fn) =
1

N

wnMSEn

w
(1− fn), (5)

where w =
∑N

n=1 wn/N is the saliency weight averaged
over all LCUs. Since we can see from (5) that ΔS(fn =
1, wn) = 0, we only focus on training function ΔS(fn =
0, wn) in the following way.
Training Sequences. The training sequences were ran-

domly selected from JCT-VC database [18], including two
1920 × 1080 sequences Cactus and BasketballDrive from
Class B, two 832 × 480 sequences BQMall and Basket-
ballDrill from Class C, and three 1280× 720 sequences Kris-
tenAndSara, Vidyo1 and Vidyo3 from Class E/E′. We empiri-
cally found that both video content and bit rate have effect on
the model of ΔS(fn = 0, wn). Thus, according to the video
content, we divided the sequences into two training sets. The
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Fig. 2. Fitting Curves of wn and NΔS(fn = 0, wn).
Table 2. The values of l, a and b at different scenarios

non-conversational conversational
QP = 27 QP = 32 QP = 27 QP = 32

l 4.613 9.520 3.484 4.794
a 0.3724 0.4655 0.4089 0.3633
b 0.0520 0.0636 0.0686 0.0669

first set consists of non-conversational videos, i.e., the four se-
quences from Classes B and C. The second set is comprised
by the three conversational videos from Class E/E′. The se-
quences in each set were compressed by HM 16.0 at two d-
ifferent Quantization Parameters (QPs), i.e., QP = 27 and 32.
All parameters in HM 16.0 are the same as those in Section 4.
Training Procedure. We decoded the training sequences

with deblocking filter being enabled and disabled, respective-
ly. As such, the MSEn can be obtained as the visual quality
loss, when disabling deblocking filter for each LCU. Then, we
randomly selected 300 LCUs in each scenario2, and recorded
their corresponding wn and MSEn.
Training Results. Given wn and MSEn of each random-

ly selected LCU, its NΔS(fn = 0, wn) can be achieved
by (5). We apply the first-order least square fitting on
(wn, NΔS(fn = 0, wn)) of all selected 300 LCUs, and the
fitting curves are shown in Fig. 2. As a result, the fitting
equation is obtained as follows,

NΔS(fn = 0, wn) = l · wn, (6)

where the values of l at different training sets of sequences
and QPs are reported in Table 2. Finally, ΔS(fn, wn) was
achieved upon (6). Note that for other QPs, the relationship
should be retrained.

3.3. Relationship Modelling forΔC(fn, wn)

For modelling ΔC(fn, wn), we define Cd(wn) as the com-
plexity of deblocking filter at the n-th LCU, which is also
related to its corresponding saliency weight. CTotal is the de-
coding complexity of a frame with deblocking filters enabled.
Then, ΔC(fn, wn) can be calculated by

ΔC(fn, wn) =
Cd(wn)

CTotal
(1− fn) =

1

N

Cd(wn)

CLCU
(1− fn), (7)

where CLCU = CTotal/N is the average decoding complexity
for each LCU. Also, we use the training sequences of Section
3.2 to model ΔC(fn = 0, wn). In the following, we briefly

2There are four scenarios including two sets of non-conversational and
conversational sequences at two QPs.
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Fig. 3. Fitting Curves of wn and NΔC(fn = 0, wn).

present the procedure and results of the training on ΔC(fn =
0, wn).
Training Procedure. The decoding complexity was mea-

sured by the software Intel R© Power Gadget 3.0, on a Win-
dows PC with Inter(R) Core(TM) i7-4790K CPU. First, al-
l training sequences (compressed by HM 16.0 at QP = 27
and 32) were decoded with deblocking filters enabled. In this
case, wn and Cn(wn) of each LCU can be recorded. Then, we
randomly selected wn and Cn(wn) of 300 LCUs from each
scenario to model ΔC(fn = 0, wn).
Training Results. Again, we apply the first-order least

square fitting on (wn, NΔC(fn = 0, wn)) of all selected L-
CUs. The fitting curves are plotted in Fig. 3. Consequently,
the function of NΔC(fn = 0, wn) is obtained as follows,

NΔC(fn = 0, wn) = a · wn + b, (8)

where the values of a and b at different sets and QPs are
presented in Table 2. Finally, ΔC(fn, wn) can be modelled.

3.4. Solution to SQOCC optimization formulation
Now, based on (6) and (8), formulation (4) for our SQOCC
approach can be rewritten in the following,

min
{fn}N

n=1

N∑
n=1

1

N
l · wn · (1− fn)

s.t.
N∑

n=1

1

N
(a · wn + b)(1− fn) ≥ ΔCT . (9)

Then, we concentrate on finding optimal solution set F =
{fn}

N
n=1 towards (9). First, let {w̃n}

N
n=1 be the set of the

ascending sorted3 {wn}
N
n=1. Given {w̃n}

N
n=1, Lemma 1 can

be used for finding the optimal solution to (9).
Lemma 1: Let a > 0, b > 0, l > 0 and wn ∈ [0, 1].

Assume that F = {fn}
N
n=1 satisfies

fn =

{
0, wn ≤ w̃I

1, otherwise,
(10)

where w̃I is the I-th value of ascending sorted {wn}
N
n=1.

Assume that F
′

= {f
′

n}
N
n=1 is another set, where f

′

n ∈ {0, 1}.
If

N∑
n=1

1

N
(a · wn + b)(1− fn) =

N∑
n=1

1

N
(a · wn + b)(1− f

′

n), (11)

3The quicksort algorithm [23] is used, which averagely consumes 0.05ms
(3.2× 10−4mWh) per frame.

then the following inequality holds
N∑

n=1

1

N
l · wn · (1− fn) ≤

N∑
n=1

1

N
l · wn · (1− f

′

n). (12)

Proof: When F
′

= F, obviously the following equation
holds exactly,

N∑
n=1

1

N
l · wn · (1− fn) =

N∑
n=1

1

N
l · wn · (1− f

′

n). (13)

When F
′

�= F, if I <
∑N

n=1(1 − f
′

n), then the following
inequality exists,

I∑
n=1

w̃n <

N∑
n=1

wn · (1− f
′

n), (14)

due to the fact that w̃I is the I-th value of ascending sorted
{wn}

N
n=1. So, the following inequality holds in the case a >

0 and b > 0,
I∑

n=1

a · w̃n + I · b <

N∑
n=1

a · wn · (1− f
′

n) +

N∑
n=1

b · (1− f
′

n). (15)

Because of (10), I =
∑N

n=1(1 − fn) holds, then (11) can be
rewritten as
I∑

n=1

a · w̃n + I · b =
N∑

n=1

a · wn · (1− f
′

n) +
N∑

n=1

b · (1− f
′

n), (16)

which contradicts with (15). Therefore, we have I ≥∑N

n=1(1 − f
′

n). As such, given wn ∈ [0, 1] and l > 0, we
can obtain the following inequality,

I∑
n=1

l · w̃n =
N∑

n=1

l · wn · (1− fn) ≤
N∑

n=1

l · wn · (1− f
′

n). (17)

Finally, the inequality (12) can be achieved upon (17).
This completes the proof of Lemma 1.
According to Lemma 1, if and only if wn ≤ w̃I , fn = 0 is

the optimized solution to (9). Considering that
∑N

n=1
1
N
(a ·

wn + b)(1 − fn) should be as close to ΔCT as possible, the
optimized solution for SQOCC approach can be expressed as

fn =

{
0, wn ≤ w̃I

1, otherwise,
(18)

where I satisfies

1

N

I∑
n=1

(a · w̃n + b) ≥ ΔCT >
1

N

I−1∑
n=1

(a · w̃n + b). (19)

4. EXPERIMENTAL RESULTS

In this section, experimental results are provided to vali-
date the effectiveness of our SQOCC approach, in compari-
son with the latest HEVC decoding complexity reduction ap-
proach on [12]. First, the settings of our experiments are pre-
sented in Section 4.1. Then, the effectiveness of our SQOC-
C approach is evaluated in two aspects: the accuracy of
decoding complexity control (Section 4.2) and complexity-
distortion performance (Section 4.3).



4.1. Settings
We tested our approach on three 1920 × 1080 sequences
ParkScene, Kimono and BQTerrace from Class B, two 832×
480 sequences PartyScene and RaceHorses from Class C, and
three 1280×720 conversational sequences FourPeople, John-
ny and Vidyo4 from Class E/E′. First, all the tested sequences
were encoded by the HM 16.0 encoder. Here, the Random
Access (RA) configuration was implemented with Group Of
Picture (GOP) being 8. Two common QPs, 27 and 32, were
set to encode the test videos without any rate control. Besides,
the deblocking filters were enabled during the encoding. Note
that all other parameters of the encoder were set by default.
For decoding, HM 16.0 was also utilized with the default set-
tings.

The experiments were all performed on a Windows PC
with Inter(R) Core(TM) i7-4790K CPU and 32G RAM. In or-
der to measure the decoding complexity, Intel R© Power Gad-
get 3.0 was used to record the decoding power consumption
in terms of mWh. In order to evaluate visual quality loss,
both objective Y-PSNR difference (ΔPSNR) and subjective
Y-PSNR difference (ΔSPSNR) were measured. For fair com-
parison, we utilized human fixation maps from eye-tracking
experiments, instead of our detected saliency maps, to weight
MSE for calculating ΔSPSNR.

4.2. Accuracy of Complexity Control
Table 3 demonstrates the accuracy of HEVC decoding com-
plexity control of our SQOCC approach. Note that the com-
putational complexity of saliency detection and quicksort,
which takes up much less complexity than HEVC decod-
ing, is included in our decoding complexity. Also, note
that we do not compare with [12] in terms of control accu-
racy, since [12] is a complexity reduction approach, rather
than complexity control, for HEVC decoding. We can see
from Table 3 that the absolute control errors of most se-
quences are less than 1.00%. Besides, the Mean Absolute
Errors (MAEs) are 0.35%, 1.04%, 0.50%, 0.78% at ΔCT =
3.00%, 8.00%, 12.00%, 15.00% for QP = 27. Similar MAEs
can be found for QP = 32. In general, the results here veri-
fies that our SQOCC approach is able to control the HEVC
decoding complexity with high accuracy.

4.3. Performance of quality loss
In this subsection, we evaluate ΔPSNR and ΔSPSNR of our
SQOCC approach, compared to those of [12]. The results of
conversational and non-conversational sequences are shown
in Figs. 4 and 5. It can be seen from these two figures that
our approach significantly outperforms [12] in terms of both
ΔPSNR and ΔSPSNR. We can further see from these fig-
ures that ΔSPSNR is less than ΔPSNR in our approach, when
complexity reduction is below ∼ 10%. This verifies that the
subjective quality can be optimized in our SQOCC approach.
Once the complexity reduction becomes larger, the subjec-
tive quality may not be ensured, since much more deblocking
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Fig. 5. ΔPSNR and ΔSPSNR for conversational sequences.

Kimono, QP = 32, ΔC = 9.17%, SQOCC

Kimono, QP = 32, ΔC = 5.79%, [12]

Fig. 6. The 36-th frame of Kimono decoded by our SQOCC and [12] approach.

filters in ROIs are disabled. Note that when complexity re-
duction reaches the maximum, ΔSPSNR may be larger than
ΔPSNR. This is because the distortion in ROIs is larger in
comparison with that of non-ROIs, and ΔSPSNR imposes the
distortion of ROIs with higher weights.

Furthermore, Fig. 6 shows one selected frame of Kimono
at QP = 32, decoded by HM 16.0 with our approach and the
conventional approach [12]. Clearly, our approach produces
higher visual quality in face regions than [12], even when the
complexity reduction is much more in our approach. Besides,
the non-ROI background is with low quality in our approach,
as there exist obvious blocky effects. This also indicates that
our approach is capable of optimizing subjective quality by
maintaining high quality in ROIs at the expense of low quality
in non-ROIs.

5. CONCLUSION
In this paper, we have proposed a novel approach, named
SQOCC, for complexity control of HEVC decoding. First-
ly, for subjective quality assessment, we proposed to detect
video saliency, according to bit allocation in HEVC domain.
Next, we developed an optimization formulation which con-
trols HEVC decoding complexity to a target with minimal



Table 3. Complexity control performance of SQOCC approach

QP ΔCT (%) Non-conversational sequences Conversational sequences MAE (%)ParkScene Kimono BQTerrace PartyScene RaceHorses FourPeople Johnny Vidyo4

27

3.00 2.99 2.96 3.36 2.45 4.55 3.21 2.94 3.04 0.35
8.00 9.43 8.95 9.77 6.88 8.23 9.12 7.94 9.61 1.04

12.00 12.75 12.06 12.11 10.30 11.79 12.00 11.13 12.29 0.50
15.00 14.33 14.23 16.18 15.81 15.92 - - - 0.87

32

3.00 2.81 3.27 4.55 2.02 3.10 3.43 3.26 2.85 0.49
8.00 8.17 8.39 9.64 7.59 7.81 9.17 7.88 8.80 0.82

12.00 12.51 11.95 11.62 9.42 11.53 11.74 13.26 12.59 0.76
15.00 14.89 14.49 16.14 14.28 15.30 - - - 0.56
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Fig. 4. ΔPSNR and ΔSPSNR for non-conversational sequences.

subjective quality loss, via disabling the deblocking filters of
some specific LCUs. Then, we investigated the relationship
between saliency and subjective quality loss, and the relation-
ship between saliency and deblocking complexity. Finally, we
provided a solution to our optimization formulation, achiev-
ing SQOCC for HEVC decoding. The experimental results
validate the effectiveness of our SQOCC approach.

6. REFERENCES

[1] Gary J Sullivan, J-R Ohm, Woo-Jin Han, and Thomas Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) standard,” IEEE TCSVT, pp. 1649–1668,
2012.

[2] Frank Bossen, Benjamin Bross, Karsten Suhring, and Damian Flynn, “HEVC
complexity and implementation analysis,” IEEE TCSVT, pp. 1685–1696, 2012.

[3] Mauricio Alvarez-Mesa, Chi Ching Chi, Ben Juurlink, Valeri George, and Thomas
Schierl, “Parallel video decoding in the emerging HEVC standard,” in ICASSP,
2012.

[4] Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink, Gordon Clare, Félix Hen-
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