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ABSTRACT As the latest video coding standard, High Efficiency Video Coding (HEVC) tremendously
improves the encoding efficiency compared with the preceding H.264/AVC standard, but at the cost of higher
encoding complexity. This huge encoding complexitymakes the implementation of HEVC intractable on live
videos. For coping with this problem, two major challenges need to be solved: 1) How to accurately reduce
the encoding complexity to achieve the target complexity? and 2) How to maintain the video quality after
encoding complexity reduction? To solve these two challenges, we propose, in this paper, a hierarchical
complexity control approach of HEVC. For the first goal, the complexity control is implemented in two
levels to assure the control accuracy. In the largest coding unit (LCU) level, we adjust the maximum depths
of LCUs in a frame to reduce the encoding complexity to the target. Since each frame has numerous LCUs,
and each LCU can choose its maximum depth from one of the four maximum depths, the large degree of
freedom contributes to the high control accuracy. However, theremay be still some errors. These errors can be
compensated in the frame level by a proposed frame level complexity control algorithm. For the second goal,
one objective weight map and one subjective weight map are proposed to use in the process of complexity
control to keep the objective and subjective video quality simultaneously. Finally, The experimental results
show that our approach outperforms other state-of-the-art approaches, in terms of both control accuracy and
video quality.

INDEX TERMS High Efficiency Video Coding (HEVC), complexity control.

I. INTRODUCTION
Recently, with the increased demand of immersive video
watching experience, watching live videos has been an impor-
tant part of people’s lives. People are more interested in live
videos than recorded videos, because the former can bring
them real-time experience and feeling. People watch live
football matches, use video chat to communicate with their
parents and friends in the distance, and the corporations use
video conferencing to make a meeting with staff from differ-
ent places. For more immersive experience, the resolutions of
live videos are expected to be high, usually as 1080p or 4K.
According to CiscoVisual Networking Index (VNI), by 2019,
more than 30%of connected flat-panel TV sets will be 4K and
the traffic of 1080p and 4K videos will make up 90.9% of the
global video traffic.

The high resolution and huge data of live videos can lead to
some problems. As we know, thousands of live videos need to
be broadcasted on TV or Internet everyday. However, with the

high resolutions, the broadcasting of live videos is facing two
main challenges. Firstly, the transmission bandwidth is too
limited to transmit the live videos with such a high bit rate.
Secondly, the live videos require low-delay encoding, which
means that each frame must be encoded in a very short time.
Fortunately, the release of the High Efficiency Video Cod-
ing (HEVC), also called H.265, copes with the first challenge
well. According to [1], HEVC has successfully saved 59%
bit-rate over the previous H.264/ MPEG-4 AVC with similar
subjective quality. However, this high coding efficiency relies
on many time-consuming coding techniques, which makes
the encoding complexity of HEVC quite enormous. In other
words, the encoding of each frame usually consumes a lot of
time by HEVC, making the solving of the second challenge
quite intractable.

To solve this problem, some works have been done to con-
trol encoding complexity of HEVC. In 2013, Correa et al. [2]
proposed to control the encoding complexity of HEVC by

7014
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 4, 2016



X. Deng et al.: HCC of HEVC for Live Video Encoding

calculating the number of constrained frames (i.e., frames
with complexity reduction) according to the target complex-
ity. However, the control range in [2] is quite limited, only
from 100% to 60%. In 2015, we proposed in [3] a novel
complexity control approach for HEVC to overcome the dis-
advantages of [2], which can achieve complexity control with
a quite large range, i.e., from 100% to 20%. However, this
approach has twoflaws. Firstly, the complexity control is only
done on a single level and all the control parameters are fixed
during the encoding process, and thus its control accuracy
is not satisfactory. Secondly, the splitting of many largest
coding units (LCUs) is skipped according to their subjective
weights, and the improper early-skip leads to some unnec-
essary bit-rate increase and objective quality loss. To solve
these problems, we propose in this paper a new approach
based on [3], called Hierarchical Complexity Control (HCC)
for HEVC. In this approach, encoding complexity is con-
trolled in two levels, i.e., frame level and LCU level, and thus
the control accuracy can be significantly improved. Another
technique we use to increase the control accuracy is the
classified relationship models, which is introduced in detail
in Section III-A. As for the objective quality loss, we employ
the new proposed objective weight maps to protect the
objective video quality, which is explained in Section IV-A.
Figure 1 shows an application example of our approach.
When a basketball match is playing and need to be encoded,
we can adjust the complexity allocation according to the
importance of the different regions, in order to decrease
the encoding complexity to the target and keep the video
quality.

In this paper, we propose a hierarchical complexity control
approach for live videos encoding on the HEVC platform.
Compared with our previous work [3], this new approach
overcomes many drawbacks of the old work by introducing
some new techniques. Specifically, the main technical contri-
butions of our HCC approach in this paper are summarized
as follows,
• We investigate and establish a classified relationship
between LCUmaximumdepth and encoding complexity
to increase the control accuracy.

• We achieve complexity control in two levels: LCU level
to achieve complexity control of each frame, and further
frame level to achieve complexity control of the whole
video.

• We employ both objective and subjective weight maps to
simultaneously keep the objective and subjective video
quality.

The whole paper is organized as follows. In Section II,
we briefly review the related works on the encod-
ing complexity reduction and control of HEVC. Then,
in Section III-A, two classified relationships about encoding
complexity, video quality distortion, and LCU maximum
depth are trained and modelled. In Section IV, details about
the proposed HCC approach are discussed. The experimental
results are shown in Section V to verify the effectiveness of
our HCC approach from different aspects. Finally, Section VI
concludes this paper.

II. RELATED WORKS
The works with respect to the encoding complexity of HEVC
have been extensively studied, since the issue of HEVC
in January, 2013. Among these works, there are two main
research directions, i.e., complexity reduction and complexity
control.

For HEVC complexity reduction, extensive studies pay
attention to the new coding tree unit (CTU) partitioning
scheme, which leads to huge encoding complexity. Among
these studies, [2] and [4]–[9] devoted to find ways to reduce
the encoding complexity on exhaustively searching for opti-
mal CU sizes in the block partitioning process. Specifically,
Leng et al. [10] proposed an early CU depth prediction
approach at frame level. The basic idea of this approach
is to skip some CU depths which are rarely used in the
previous frames, thus simplifying the RDO search process
to save encoding complexity. Literature [2], [4] developed
similar approaches at CU level, with the central idea to narrow
the current CU depth search range, by virtue of the depth
information of adjacent CUs. Different from this kind of
approaches, Shen et al. [7] developed a fast CU size selection

FIGURE 1. One application of our approach. The complexity layout changes according to the target complexity, of which the dark areas are
allocated with less complexity resources (i.e., smaller maximum depths).
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approach for complexity reduction in HEVC, based on a
Bayesian decision rule. It employs some computational-
friendly features to make a precise and fast selection on
CU sizes, by minimizing the Bayesian risk of RD cost.
Xiong et al. [11] proposed a fast pyramid motion divergence
based CU selection method and used k nearest neighboring
like method to determine the CU splitings. Besides, some
early prediction unit (PU) and transform unit (TU) size deci-
sion methods were proposed in [12]–[15] to speed up the PU
and TU size selection process. Specifically, Yoo and Suh [14]
checked the code block flag (CBF) and RD cost of the cur-
rent PU to terminate the prediction process of the next PU
for complexity reduction. Except for CU, PU, and TU size
decisions, there are still other components in HEVC affecting
the encoding complexity, such as in-loop filtering, and multi-
directional intra predictions. From these aspects, [16]–[18]
provided several methods to reduce the encoding complexity
of HEVC. For example, Zhang and Ma [16] proposed a fast
intra mode decision for HEVC encoder. It introduces a rough
mode search scheme to selectively check some potential
modes instead of all candidates, thus simplifying the intra
prediction process for complexity reduction. Apart from these
approaches, most recently, machine learning and data mining
techniques have also been used for reducing the encoding
complexity of HEVC [19], [20].

Compared with HEVC complexity reduction, the works
for HEVC complexity control is not too much. As for the
existing researches, there are three main thoughts employed
for HEVC complexity control: complexity allocation, param-
eter control, and early terminating. The complexity allocation
aims to achieve a target complexity by reasonably allocating
the complexity resources. The parameter control is to find out
and configure several encoding parameters to make complex-
ity controllable. The early terminating leverages various early
termination algorithms to control complexity. The existing
approaches on HEVC complexity control may use one or
more of the three thoughts. Specifically, Zhao et al. [21]
employed a user-defined complexity factor to control the
number of coding modes, such that the encoding complexity
of HEVC can be adjusted. However, it cannot accurately
control the encoding complexity. Correa et al. [2] achieved
HEVC complexity control by means of early terminating the
coding tree splitting process. In this approach, frames are
divided into two categories: unconstrained frames (Fu) and
constrained frames (Fc). The coding unit (CU) depth in Fc is
early determined with the same as CU depth in its previous
Fu frame. Through adjusting the number of Fc, in which the
CU splitting process is early terminated, the target encoding
complexity can be achieved. Jimenez Moreno et al. [22] have
proposed a complexity control approach for HEVC which
is based on a set of early termination conditions. However,
the control accuracy is fluctuated among the test sequences,
with the highest control error more than 6%, and in the same
sequence, the control accuracy is fluctuated sharply across
different frames. Most recently, we proposed an approach [3]
to control the encoding complexity of HEVC, which can

achieve complexity control of HEVC from 100% to 20%.
However, the control accuracy of this work is not very high.
Besides, a lot of bit-rates are wasted in [3] due to improper
early-skip of LCU splitting. Thus, further improvements can
still be achieved in the field of HEVC encoding complexity
control.

In this paper, we propose a new HCC approach for HEVC
to control the encoding complexity with large range and
high accuracy. Different from [3], we explore the relation-
ship between encoding complexity and LCUmaximum depth
more accurately and classify it into two categories according
to the frame order, so that the depth-complexity relationship
modelled in this work are more accurate. Moreover, due to
the new introduced frame level complexity control technique,
the control parameters can be adaptively adjusted during the
encoding process, which significantly contributes to the con-
trol accuracy.More importantly, both objective and subjective
weight maps are taken into considerationwhen decreasing the
encoding complexity of LCUs. This way, both the objective
and subjective video quality are kindly preserved in this
approach.

III. RELATIONSHIPS MODELLING
A. CLASSIFIED DEPTH-COMPLEXITY RELATIONSHIP
In HEVC, one important parameter for LCU splitting is the
allowed LCU maximum splitting depth. We only call it LCU
maximum depth in this paper for convenience. This param-
eter is important because it determines the smallest coding
unit (CU) each LCU can be split into, and it has been verified
as an effective parameter to adjust the encoding complexity
of HEVC in [3]. Since we focus on the complexity control for
live videos, the Low-delay P main configuration is used with
the default hierarchical coding structure for model training.
The hierarchical coding structure is a default coding structure
in HEVC and Figure 2 shows this structure with the size of
group of pictures (GOP) default as 4. We can see that in a
GOP, frames can be divided into different levels according to
their quantization parameter (QP) values. As demonstrated

FIGURE 2. Hierarchical coding structure for the Low-delay
P configuration [23]. f4n, f4n+1, f4n+2, f4n+3, and f4(n+1)
are the frame order.
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later, this hierarchical coding structure has effects on the
relationships between LCU maximum depth and encoding
complexity.

For analyzing the relationship between maximum
depthMd and encoding complexity Ec, we trained three video
sequences at four different maximum depths (i.e., 3, 2, 1, 0)
on HM 16.0 software, with Low-delay P main setting. The
training video sequences were selected from the standard
HEVC test sequence database, as shown in Table 1. Note
that these training sequences are different from the test video
sequences in Section V. We used a 64-bit Windows PC with
Inter(R) Core(TM) i7-4770 processor @3.40 GHz to carry
out the training process. The training sequenceswere encoded
with four different QPs, i.e., 22, 27, 32, and 37. Given each
QP, the LCU maximum depths were set as 3, 2, 1, and 0,
and the encoding time of each LCU was recorded. Here, the
encoding time with maximum depth being 3 was regarded as
the reference full time, which was utilized to normalize the
encoding time of other maximum depths, i.e., 2, 1, 0. Assume
that Ec(Md ), Md ∈ {3, 2, 1, 0}, denotes the LCU encoding
time at maximum depth Md . Then, Ec(Md ) was normalized
using the reference time Ec(Md = 3):

Ẽc(Md ) =
Ec(Md )

Ec(Md = 3)
, Md ∈ {3, 2, 1, 0}. (1)

Then, the normalized encoding time of all LCUs is averaged
for each frame. Figure 3 shows the encoding complexity of
different frames with different maximum depths. We find
that the encoding complexity is different among four frames
in GOP. Interestingly, this difference is consistent with the
hierarchical coding structure in Figure 2. The 4-th frame has
the smallest QP and correspondingly, its encoding complexity
is the highest in the GOP. It is probably because more bits are
assigned to the 4-th frame in the GOP, which may lead to
the increase of encoding complexity. Thus, for more accurate
depth-complexity model, the 4-th frame should be separated
from the other three frames. Since the difference among the
first three frames is not that much, they can be analysed
together.

Figure 4 shows the specific analyzing procedure for the
4-th frame and the first 3 frames. For each sequence, the
encoding complexity Ẽc(Md ) is first averaged among all
frames of the training sequence, and then averaged among
four QPs. Assume that E ′c(Md ) and E ′′c (Md ) are the relation-
ships between maximum depthMd and encoding complexity
for the 4-th frames and other three frames in GOPs, respec-
tively. The specific fitting curves about E ′c(Md ) and E ′′c (Md )
for all three sequences are shown in Figure 5. From this
figure, we can find that there is little difference between the

three training sequences for both E ′c(Md ) and E ′′c (Md ). Thus,
we averaged the encoding complexity for all three sequences
to model the final relationships, shown as the red curves in
Figure 5.We can see that the R-square values of the red curves
are 0.9997 and 1 for E ′c(Md ) and E ′′c (Md ), verifying the accu-
racy of the relationships. Finally, the encoding complexity
at different Md (i.e., 3, 2, 1, 0) was obtained, as presented
in Table 2.

B. CLASSIFIED DEPTH-DISTORTION RELATIONSHIP
Wehave established the relationship between LCUmaximum
depth and encoding complexity. From now on, we concen-
trate on exploring the influence of LCU maximum depth on
the video distortion. It is evident that the reduction of max-
imum depth usually results in more video quality distortion.
Here, the training sequences we used are the same as those in
the former subsection, as presented in Table 1. Note that in
this paper, the video quality distortion is measured by mean
square error (MSE). The MSEs at different maximum depths
(i.e., 3, 2, 1, 0) were recorded for each frame, defined as
MSE(Md ). Next, the normalized distortion can be computed
as follows,

D̃(Md ) =
MSE(Md )−MSE(Md=3)

MSE(Md=3)
, Md ∈{3, 2, 1, 0}.

(2)

Similar to the training procedure in the former subsec-
tion, D̃(Md ) was first averaged among all all frames and
four QPs in each sequence, and further averaged among

FIGURE 3. The encoding complexity difference across the four frames in
GOPs with different QPs. The results are from KristenAndSara sequence.

TABLE 1. Training sequences and configuration.
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FIGURE 4. Complexity analyzing procedure: solid line is the procedure for the 4-th frame; dashed line is the procedure for other 3 frames in
each GOP.

FIGURE 5. Fitting curves between maximum depth Md and encoding complexity E ′
c (Md ) for the 4-th frames, and E ′′

c (Md ) for the other
three frames. Note that the horizontal axis x stands for maximum depth Md , and the vertical axis y stands for the encoding complexity.
All the curves are obtained by curve fitting using Gaussian models, with the R-square values showing in the figures as well. The red curve
with its corresponding function is the final relationship adopted in this paper. (a) E ′

c (Md ). (b) E ′′
c (Md ).

TABLE 2. Relationships between Md and encoding complexity Ec .

TABLE 3. Relationships between Md and distortion D.

all three training sequences. The results are shown in
Table 3. D′(Md ) and D′′(Md ) are the distortion for the
4-th frame and other three frames respectively. From
this table, we can observe that the video distortion
increases drastically alongside the reduction of maximum
depth.

IV. COMPLEXITY CONTROL
In this paper, complexity control is done in two levels. In the
LCU level, the maximum depth of LCUs in each frame is
adjusted to make the frame encoding complexity reach the
frame target. In the frame level, the target complexity for
each frame is adjusted to make the whole video encoding
complexity reach the video target. But before introducing

the complexity control algorithms, we first elaborate the two
weight maps which are of great importance in solving the
complexity control problem later.

A. OBJECTIVE WEIGHT MAP
The objective weight map is used to preserve objective qual-
ity and coding efficiency in the complexity control process.
Here, we propose to use the bit-allocation map as the objec-
tive weight map, because we find that the bit-allocation map
can tally with the optimal depth allocation well. Here, the
optimal depth refers to the depth calculated through the RDO
process. As we can see in Figure 6, the LCUs allocated with
more bits tend to have larger optimal depths, and LCUs with
smaller bits have great chance being not split, i.e., the optimal
depth is 0.

In order to accurately analyse the dependency between
the optimal depth and bit allocation, two conditional prob-
ability P(D|B) and P(B|D) are adopted, where D denotes
the event that the optimal depth is 0, 1, 2 or 3, and B is
the bit allocation order. For example, P(D = 0|B < 20)
indicates the probability of event that the optimal depth of
LCU is 0 when its allocated bit is ordered less than 20%.
Table 4 shows the average results of P(D|B) for three dif-
ferent videos. We can see that the lower the bit order is, the
more probability the optimal depth can have a smaller value.
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FIGURE 6. The pictures in the first row are original frames. The pictures in the second row are bit allocation maps, i.e., objective weight maps.
(g), (h) and (i) show relationships between optimal depth and bit allocation, with the horizontal axis being the ascending order of
bits allocated to each LCU.

TABLE 4. Average results of the probability P(D|B).

Specifically, when B is less than 20%, the probability of the
event that LCUs do not split (i.e., D = 0) is 99.80 for Cactus,
99.81 for KristenAndSara, and 99.89 for BQMall. In other
words, by setting the maximum depths of these LCUs to
be 0, the encoding complexity can be saved with little quality
and coding efficiency loss. In addition to P(D|B), we also

FIGURE 7. P(B|D) of BQMall, where B is divided into five categories:
B < 20, 20 < B < 40, 40 < B < 60, 60 < B < 80, and 80 < B < 100.

calculate P(B|D) for explain the dependency between the
optimal depth and bit allocation more completely. Figure 7
shows the results. P(B < 20|D = 0) indicates the probability
of the event that the bit order is less than 20% when the
LCU optimal depth is 0. We can see from Figure 7 that when
D = 0, P(B < 20|D = 0) is the highest, and when D = 3,
P(80 < B < 100|D = 3) is the highest. We can get the
conclusion that comparedwith smallerD, largerD has greater
chance to be allocated with more bits.

VOLUME 4, 2016 7019
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FIGURE 8. Examples of subjective weight maps. For the original pictures, refer to the first row of Figure 6. (a) Cactus: the 60-th frame.
(b) KristenAndSara: the 104-th frame. (c) BQMall: the 48-th frame.

Since the bit allocation information of the current frame
can only be obtained after encoding, we use the bit allocation
map of its previous frame as the map for the current frame.
Finally, let Bj be the bits allocated to the j-th LCU, we can get
the normalised objective weight of the j-th LCU Oj as:

Oj =
Bj
Bmax

, (3)

where Bmax is the largest bits among LCUs in a frame.Oj will
be used in Section IV-C for coping with the Md allocation
problem.

B. SUBJECTIVE WEIGHT MAP
Different from objective weight map, subjective weight map
is employed for optimizing the subjective quality. Here, the
PQFT algorithm [24] is used to yield the saliency value of
each LCU as the element in the map. The subjective weight
maps can highlight regions attracting people’s attention most
when they are watching videos. Fig. 8-(a) and (b) show the
subjective weight maps. The normalised subjective weight of
j-th LCU can be calculated as:

Sj =
Vj
Vmax

, (4)

where Vj is the saliency value of the j-th LCU, and Vmax is
the largest saliency value among all LCUs in a frame. For
protecting the subjective video quality, we have the following
observation:

1) OBSERVATION
The LCUs with greater subjective weights should be assigned
with larger maximum depths.

2) ANALYSIS
When the subjective weights of some LCUs are greater than
those of others, it means that these LCUs can attract more
visual attention. In other words, the video distortion of these
LCUs, like the blocking artifacts, has greater effect on the
whole subjective quality than others. Thus, for keeping the
subjective quality, the video quality of LCUs with greater
subjective weights should be protected as much as possible.
We can see from Table 3 that along with the decreasing
of LCU maximum depth, the video distortion is drastically
increased. Accordingly, towards better subjective quality,

larger maximum depths should be imposed on LCUs which
have greater subjective weights. This completes the analysis
of observation 1).

However, the subjective weight has lower relevance with
optimal depth. For example, many LCUs have large subjec-
tive weights but their optimal depths are pretty small. Relying
on subjective weights to determine the maximum depths of
LCUs may incur objective quality and coding efficiency loss.
That is also the main reason why [3] has large objective qual-
ity loss. By comparison, the objective weights can protect the
objective quality, but may impair the subjective quality. Thus,
in order to keep a balance between the objective and perceived
quality, we take both the objective weight Oj and subjective
weight Sj into consideration when deciding the maximum
depths of LCUs in the process of complexity control.

C. COMPLEXITY CONTROL AT LCU LEVEL
The aim of LCU level complexity control is to reduce the
encoding complexity of the frame to be a given target, which
is based on the classified depth-complexity relationship mod-
eled in Section III-A. Since the relationships are classfied for
the 4-th frame and other three frames in GOPs, the controlling
algorithm can be expressed by the following two optimiza-
tions:

Optimization I. min
{Md }

∣∣∣∣∣∣1J
J∑
j=1

E ′c(Md )j − T̃k

∣∣∣∣∣∣︸ ︷︷ ︸
For the 4-th frame

, (5)

Optimization II. min
{Md }

∣∣∣∣∣∣1J
J∑
j=1

E ′′c (Md )j − T̃k

∣∣∣∣∣∣︸ ︷︷ ︸
For the first 3 frames

, (6)

where T̃k (≤ 100%) is the target complexity for the k-th
frame, the value of which is decided by the frame level com-
plexity control to be discussed in the next subsection. J is the
total number of LCUs in each frame. E ′c(Md )j and E ′′c (Md )j
are the encoding complexity of the j-th LCU with maximum
depth being Md in the 4-th frame and the first 3 frames,
respectively. Next, we concentrate on the solution to the
optimization of (5) and (6).

For solving this optimization, we introduce a reasonable
assumption first. That is, the encoding complexity of each

7020 VOLUME 4, 2016



X. Deng et al.: HCC of HEVC for Live Video Encoding

FIGURE 9. Examples of how to find the Md for each LCU.

LCU is unified for LCUs with the same maximum depthMd .
This assumption is reasonable, because only the sum of
LCU’s encoding complexity is considered in the encoding
complexity goal. Given this assumption, (5) can be turned to

min
{Kn}3n=0

∣∣∣∣∣1J
3∑

n=0

E ′c(Md = n)Kn − T̃k

∣∣∣∣∣ s.t.
3∑

n=0

Kn = J (7)

where Kn is the number of LCUs with maximum depth Md
being n in the frame (n ∈ {0, 1, 2, 3}). Note that the sum
ofKn is equivalent to the total number J of LCUs in the frame.
Actually, (7) is a NP-hard optimization problem and can be
solved using Branch-and-Bound algorithm. For details about
this algorithm, we refer to [25]. After solving (7), we can get
the values of Kn in the 4-th frame in GOP. The same solving
process can be used to (6) to get Kn for the first 3 frames
in GOP. Next, the most important thing is how to locate the
LCUs which deserve the corresponding Md .
Recall the objective and subjective weights in

Section IV-A and IV-B, each LCU can have two impor-
tant properties, i.e., the objective weight Oj and subjective
weight Sj. Next, we design an algorithm to find theMd of each
LCU based on its normalised objective and subjective weight.
Firstly, we need to sort the objective weights of all LCUs
in the frame in an ascending order, and sort the subjective
weights of all LCUs in the frame in a descending order. After
that, we can get two thresholds, λK0 and λK0+K1 , from the
sorted objective weights, and one threshold θK3 from the
sorted subjective weights. λK0 and λK0+K1 are the K0-th and
(K0 +K1)-th smallest objective weights, and θK3 is the K3-th
largest subjective weight. Then, through comparing Oj with
λK0 and λK0+K1 , and comparing Sj with θK3 , we can obtain
the Md of the j-th LCU. The specific comparing algorithm

is shown in Figure 9. When Oj is smaller than λK0 , Md is 0.
When Oj is larger than λK0 and smaller than λK0+K1 ,Md is 1.
For LCUs whose Oj is larger than λK0+K1 , Md is determined
according to Sj. Specifically, when Sj is larger than θK3 , Md
is 3. Otherwise, Md is 2. Here, we use objective weights
to determine the smaller Md (i.e., 0 and 1) and subjective
weights to decide the larger Md (i.e., 2 and 3), because we
believe this can help to keep both the objective and subjective
video quality well, and the experimental results also verifies
this technique’s effectiveness.

Figure 10 shows the Md distribution in a frame using
our and [3] approaches. From this figure, we can see that
our approach can allocate Md to each LCU more reason-
ably. Specifically, our approach offers four different Md for
each LCU to choose from, while [3] only has two. This
way, even with very low encoding complexity, e.g., 40% in
Figure 10, our approach can still preserve the quality of
important regions (e.g., the face region in Figure 10) well
through allocating the largest Md to them.

D. COMPLEXITY CONTROL AT FRAME LEVEL
After complexity control at LCU level, we can control the
encoding complexity of each frame by allocatingMd to differ-
ent LCUs in the frame. However, since the classified depth-
complexity relationship is trained only by three sequences,
it is hard for this relationship to be accurate enough for all
the test sequences. In that case, the control accuracy can be
negatively affected. For coping with this problem, we develop
a complexity control algorithm at frame level, in order to
compensate the control error and further improve the control
accuracy.

The basic idea is to adjust the target complexity T̃k for the
k−th frame, to make it adaptive to the consumed encoding
complexity of its previous encoded frames. To this end, we
need to estimate a reference encoding time ts based on an
initial target complexity Tc. Specifically, the first N frames
in the video should be encoded without complexity control.
The whole encoding time of these N frames is recorded as tg.
According to tg, ts can be estimated by

ts = Tc ·
tg
N
. (8)

In this paper, we set N to be the number of frames in the
first 12 GOPs. As we can see from Figure 11, the average

FIGURE 10. The maximum depth distribution among LCUs in our and [3] approaches. The pictures are all the 27-th frames of Johnny with
40% target complexity. (a) Original. (b) Approach [3]. (c) Our approach.
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FIGURE 11. The change of averaged encoding time per frame with the increase of encoded GOPs. The horizontal axis is the number of encoded GOPs
and the vertical axis is the averaged encoding time per frame. The red point indicates the averaged encoding time per frame of the first 12 GOPs.

encoding time of the first 12 GOPs is similar to the average
time of encoding all frames.

Then, after the k-th (k > N ) frame encoded, we record the
encoding time ek from the N -th frame to the k-th frame, and
their averaged encoding time tk can be calculated by

tk =
ek

k − N + 1
. (9)

Next, according to ts and tk , we update target complexity of
the (k + 1)-th frame to T̃k+1 before encoding the (k + 1)-th
frame, using the following equation:

T̃k+1 =


Tc − a if tk ≥ αts
Tc if βts < tk < αts
Tc + b if tk ≤ βts,

(10)

where α and β are the parameters to adjust the fluctuation
range of complexity control. Note that α is larger than 1, and
β is smaller than 1. Generally, the closer α and β are to 1,
the narrower fluctuation range is allowed, but at the cost of
higher fluctuation frequency. Besides, a and b are parameters
to make a tradeoff between control accuracy and control fluc-
tuation range. Usually, large values of a and b can improve
the control accuracy, but at the expense of aggravated control
fluctuation range. Suppose that the basic target complexity
Tc is 60%, and both a and b are set to be 5%. According
to (10), if tk ≥ αts or tk ≤ βts, the new target complexity
T̃k+1 can make a quick and drastic adjustment, which may
lead to a large fluctuation range between 55% (i.e., Tc − a)
and 65% (i.e., Tc + b). However, thanks to this quick adjust-
ment, the overall control accuracy can be quite high. In this
paper, we empirically set a and b to be 2%, and α and β to
be 1.05 and 0.95.

The frame level complexity budget can compensate the
error of LCU level complexity control. When tk is smaller
than βts, indicating that there is more computational resource
left for the subsequent un-encoded frames, the target com-
plexity T̃k+1 can be increased slightly by (10). Otherwise,
when tk is larger than αts, the target complexity T̃k+1 is
decreased a little in (10). For each frame, before encoding, its
target complexity should be updated, to adaptively compen-
sate the error of complexity control on its previous frames.
According to the updated T̃k+1, the complexity control at

TABLE 5. The basic algorithm of our SOCAS approach.

LCU level is done for the new frame. The overall algorithm
of our approach can be seen in Table 5.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our HCC
approach from several aspects. We compare our approach
with other two state-of-the-art complexity control approaches
for HEVC, i.e., [3] and [22]. The experiments were carried
out on HEVC test software HM 16.0, with typical configu-
rations presented in Table 6. The test sequences were cho-
sen from HEVC standard test sequence database. All the
sequences were tested with four different QPs, i.e., 22, 27,
32, and 37. Note that the test sequences are different from the
training sequences that have been used in Section III-A. Since
we focus on the encoding complexity control of live videos,
the Low-delay P configuration was used in the experiment.
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TABLE 6. Typical configurations of HM 16.0.

A. CONTROL ACCURACY AND FLUCTUATION
Table 7 shows the performance of the proposed approach in
terms of control accuracy, 1PSNR and 1BR. Here, 1PSNR
and 1BR are calculated according to [26]. In this table,
Rc stands for the actual running complexity, and we can
see that our approach can make Rc quite close to the tar-
get complexity. Specifically, the averaged Rc is 80.54% for
80% target complexity, 61.05% for 60% target complexity,
40.68% for 40% target complexity, and 21.49% for 20% tar-
get complexity. We also compare the results with [3] and [22]
in Tables 8 and 9, and we can easily find that our approach
has a smaller control error than the others.

As can be seen in Figure 7, the 1PSNR and 1BR perfor-
mance of our approach are better in videos like Johnny and
Vidyo1 which have small scene changes. For Johnny at 60%,
it is even surprising to find that the 1PSNR is 0 and 1BR is
negative. It means that we decrease the encoding complexity
to 60% with no PSNR loss and using less bits. While for the
videos like BasketballDrive and PartyScenewhich have large
scene changes, their performance is not as good as videos

like Johnny. This is because the large scene changesmay have
influence on the objective weight maps which rely on the bit
allocation of previous frame. Despite of this, we can still find
in Tables 8 and 9 that the 1PSNR and 1BR performance of
ours are better than the state-of-the-art approaches [3], [22].

Another advantage of the proposed approach is that it has
small generalization error. Actually, the test sequences in
Table 7 can be divided into two categories: camera-captured
videos (i.e., Class B, C, and E) and screen content videos
(i.e., Class F). The training process only uses three camera-
captured training sequences. Surprisingly, as can be seen in
Table 7, the training model not only works well in camera-
captured videos, but also performs well in screen content
videos (e.g., SlideShow and SlideEdit).

In addition to the control accuracy, the control fluctua-
tion is another element to evaluate the performance of our
approach. We compare in Figure 12 the control fluctuation
performance of our and other two approaches with 60%
target complexity. From Figure 12, we can obviously see that
our approach can achieve complexity control more steadily
than [22]. For [3], there is no obvious difference of control
fluctuation between us. But the PSNR loss fluctuation per-
formance of [3] is worse than ours. Here the PSNR loss is
the PSNR difference between the 100% complexity and the
target decreased complexity.

B. CONTROL CONVERGENCE
Apart from the aforementioned two properties, the conver-
gence property of the complexity control algorithm is also an

TABLE 7. Complexity control performance evaluation of our approach with different target complexities.

TABLE 8. Complexity control performance comparison between our and other approaches with 60% target.
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TABLE 9. Complexity control performance comparison between our and other approaches with 40% target.

FIGURE 12. The control fluctuation and PSNR loss fluctuation comparisons between our, [3] and [22] approaches. (a) Control fluctuation with
60% target complexity. (b) Control fluctuation with 40% target complexity. (c) PSNR loss fluctuation with 60% target complexity. (d) PSNR loss
fluctuation with 40% target complexity.

important indicator of the algorithm performance. Here, the
convergence ability indicates how quickly and accurately the
approach can make an adjustment to the change of the target
complexity during the encoding process. In order to investi-
gate the convergence ability of our approach, we set the target
complexity of the first 48 frames to be 100%, and the target
complexity from the 49-th to 150-th frames was set to 80%,
and the target complexity from the 150-th to 300-th frames
was set to 40%. We aim to find the response of the actual
running complexity when the target complexity is abruptly
dropped from 100% to 80% (small change), and from 80%
to 40% (large change). Figure 13 shows the experimental
results with the above experimental setup. We can see that
the proposed approach can react instantly and accurately to
the change of target complexity, whether the change is large

FIGURE 13. The convergence property of the proposed approach. The
results are from sequence PartyScene.

or small. Specifically, when the target complexity is reduced
from 100% in the 48-th frame to 80% in the 49-th
frame, the actual running complexity immediately decreases
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FIGURE 14. Examples of video quality comparisons between our, [3] and [22] approaches. The first row pictures are all selected from the 99-th
frame of PartyScene, and the second row pictures are all from the 136-th frames of PartyScene, at 40% target complexity, with QP=32. (a) Original.
(b) Our approach. (c) Approach [3]. (d) Approach [22]. (e) Original. (f) Our approach. (g) Approach [3]. (h) Approach [22].

TABLE 10. Subjective quality evaluation results.

from 99.84% in the 48-th frame to 76.72% in the 49-th frame.
When the target complexity is changed from 80% in the
150-th frame to 40% in the 151-th frame, the running com-
plexity instantly decreases from 79.69% to 39.68%. Our
approach has the ability to quickly adjust the encoding com-
plexity to reach the new target only in one frame.

C. OBJECTIVE AND SUBJECTIVE QUALITY ASSESSMENT
We have shown in Tables 8 and 9 the objective quality superi-
ority of our approach over the other two approaches in details.
For directly showing the superiority of our approach in video
quality, we present in Figure 14 the same compressed pictures
using our and other approaches. In Figure 14, we can observe

significant blocking artifacts in toy’s face and girl’s leg in
other approaches, especially [22], whereas there is no such
severe artifacts in our approach.

In addition to the objective quality, we also do the sub-
jective quality evaluation using a single stimulus continuous
quality scale (SSCQS) procedure, proposed by Rec. ITU-R
BT.500 [27] and improved by [28]. There were 16 subjects
involved in the experiments, including 5 females and 11
males. The videos were played on a 23’’ DELL U2312HM
LCD monitor with its resolution being 1920 × 1080. After
the experiment, we recorded the difference mean opinion
score (DMOS) of each video as the indicator of the subjective
quality. The smaller DMOS value means the better subjective
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FIGURE 15. The comparison of control accuracy with and without frame level complexity control algorithm. The vertical axis is the control error-the
absolute difference between actual encoding complexity and target encoding complexity.

quality. Table 10 shows the subjective quality comparison
between our and comparing approaches with 60% complex-
ity. We can see that except for two sequences, i.e., BQTerrace
and SlideShow, of which our DMOS is slightly larger than the
comparing DMOS, our DMOS is on average much smaller
than the comparing [22] DMOS. Thus, our approach can offer
better subjective video quality than [22] when reducing the
encoding complexity to the similar level. While for another
comparing approach [3] in this paper of which the results
are not shown, there is no big difference between us, mainly
because we adopt the same PQFT algorithm to calculate
the subjective weights. However, our superiorly over [3] is
significant in the aspects of objective quality and BD-rate.

D. CONTROL CONTROL PERFORMANCE WITHOUT
FRAME LEVEL CONTROL
For demonstrating the effectiveness of our frame level com-
plexity control algorithm, we remove the frame level algo-
rithm from our complete HCC approach, and then test its
performance. As shown in Figure 15, the control error is
increased without frame level algorithm. This verifies that
the frame level complexity control algorithm contributes to
increasing the control accuracy. This is because the classi-
fied depth-complexity relationship (i.e., E ′c(Md ) and E ′′c (Md ))
is obtained by training only three sequences, which is not
quite suitable for every sequence. As a result, while the
relationship is accurate for one sequence, it is not quite
accurate for another sequence.Without frame level algorithm,
the control accuracy can only rely on the trained relation-
ship, and thus inaccurate relationship may lead to control
error.

In conclusion, the aim of frame level control algorithm
is to compensate the control error caused by the inaccurate
relationship through adjusting the target complexity for each
frame. Thus, it plays an important role in increasing the
control accuracy in our work.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a novel HCC approach to hier-
archically control the HEVC complexity for live videos’
encoding. The complexity control in our approach is achieved

at two levels: the LCU level and the frame level. At the
LCU level, the maximum depth of each LCU is calcu-
lated to achieve the target complexity designated for each
frame. However, there may exist some deviations between
the actual running complexity and the target complexity of
each frame. Then, a frame level complexity control algorithm
is developed to compensate such control deviations, to fur-
ther improve the control accuracy. The experimental results
show that our approach can achieve complexity control of
HEVC with very high accuracy, average no more than 2%.
In addition, one advantage of the proposed algorithm is that
it can make a quick adjust to the abrupt change of the target
complexity during the encoding process. For protecting the
video quality after complexity reduction, the objective map
and subjective map, i.e., the bit allocation map and saliency
value map respectively, are introduced in this paper to keep
the objective and subjective quality. The experimental results
prove that our approach outperforms other approaches with
better 1BR and 1PSNR performance.

An interesting futureworkwould be to find amore accurate
objective map to integrate with the bit allocation map in this
paper to further improve the1BR and1PSNR performance.
For the videos with high scene changing rate, the bit alloca-
tion map has delay to describe the objective weights of LCUs
and the video quality may be influenced. Thus, it would be
quite useful to design an objective map which can adapt to
the scene change.
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